
SDL BMS:

A Simple Broadcast Message Server

Daniel J. Barrett

Software Development Laboratory

Computer Science Department

University of Massachusetts

Arcadia Document UM{93{03

December 20, 1993

Abstract

BMS is a simple, general, broadcast-based message server which is

used for communication between C and Ada programs. This document

describes its features and usage, including instructions on how to build

client programs that communicate via BMS.

1



Contents

1 Introduction 3

2 BMS Features 3

3 BMS Behavior 4

4 Creating Clients 5

4.1 Ada Clients : : : : : : : : : : : : : : : : : : : : : : : : : : : : 6

4.1.1 Compiling and Linking : : : : : : : : : : : : : : : : : : 6

4.1.2 Registration and Unregistration : : : : : : : : : : : : : 7

4.1.3 Creating and Destroying Messages : : : : : : : : : : : 8

4.1.4 Sending Messages : : : : : : : : : : : : : : : : : : : : : 9

4.1.5 Receiving Messages : : : : : : : : : : : : : : : : : : : : 10

4.1.6 Invoking Programs : : : : : : : : : : : : : : : : : : : : 10

4.1.7 A Complete Example Client : : : : : : : : : : : : : : : 11

4.2 C Clients : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 11

4.2.1 Compiling and Linking : : : : : : : : : : : : : : : : : : 11

4.2.2 Registration and Unregistration : : : : : : : : : : : : : 12

4.2.3 Creating and Destroying Messages : : : : : : : : : : : 13

4.2.4 Sending Messages : : : : : : : : : : : : : : : : : : : : : 13

4.2.5 Receiving Messages : : : : : : : : : : : : : : : : : : : : 13

4.2.6 Invoking Programs : : : : : : : : : : : : : : : : : : : : 14

4.2.7 A Complete Example Client : : : : : : : : : : : : : : : 15

5 Running BMS 15

6 Limitations 16

7 Extensions 16

References 16

2



1 Introduction

BMS (BroadcastMessage Server) is a general message-routing service which

provides simple broadcast of message strings among a set of client programs

written in C or Ada. It can also invoke other programs on request. BMS

has been used to integrate the SDL PIC [4] demo and the TESS [2] user

interface.

BMS runs under SunOS 4.x and is implemented on top of Q [3] from

the University of Colorado.

BMS is unrelated to the program of the same name which is a part of

HP SoftBench [1].

2 BMS Features

BMS supports two services:

1. Simple broadcast of a message among a set of programs called BMS

clients .

2. Invocation of other programs.

Programs that wish to use BMS's features must register to use them,

thereby becoming BMS clients . Any client may use BMS to broadcast a

message to all other BMS clients or invoke a program. Also, every client

is provided with a message queue to receive all messages broadcast while

they are registered. When a client is no longer interested in using BMS's

services, it may unregister .

BMS is very simple and does no �ltering of messages. That is, every

message is broadcast to every registered client, even to the client that sent

the message. BMS has no �ner-grained delivery method than this. (See

Figure 1.) Clients are responsible for inspecting all messages as they arrive

to determine their relevance.

Messages are ordinary strings. BMS imposes no structure on them. It

is the clients' responsibility to agree on a message format that they can all

understand.

3



Client 1 BMS

Client 2

Client 3

Client N

Figure 1: A typical BMS broadcast from Client 1 to all clients.

3 BMS Behavior

The following message delivery properties are true at all times while BMS

is running:

1. Every client is guaranteed to receive all messages, and only those mes-

sages, that are broadcast between the times that the client registers

and unregisters.

(Of course, if a client chooses not to examine its entire incoming mes-

sage queue, then it will not see all of its messages. If one client needs

to know that another has actually processed a particular message,

handshaking between the clients will be required.)

2. Messages are delivered strictly in the order that they are received by

BMS. That is, for all clients c

1

and c

2

, if BMS receives a message

from c

1

before it receives one from c

2

, then every client will receive

c

1

's message before it receives c

2

's message.

BMS's semantics of program invocation are:

1. BMS invokes a program when sent a string containing a UNIX shell

command.

4



2. BMS keeps track of which programs it has invoked that are still exe-

cuting, by storing the command strings used to invoke the programs.

3. BMS will allow only one invocation of a given command string to be

running at any time. If a command string is given to BMS for invo-

cation, and it exactly matches a that of currently executing program,

BMS will ignore the new command string.

1

4. When invoking a command, BMS treats all whitespace characters in

the command as word delimiters. This is true even if the whitespace

is contained inside quotes. So an invoked command such as

emacs "my filename with spaces"

is treated as having �ve arguments:

emacs

"my

filename

with

spaces"

The program invocation feature of BMS was written under time pres-

sure, so a quoted argument parser was not implemented. This was

considered unimportant since none of the �les in the PIC demo had

whitespace in their names.

4 Creating Clients

In order to make use of BMS's services, an Ada or C program will:

1. Register. BMS gives the client a registration ID which must be used

in all future contact withBMS, until after the client has unregistered.

(Required.)

2. Create outgoing messages and �ll them with data, broadcast them via

BMS, and destroy them. (All optional.)

1

This behavior is a requirement for the PIC Demo: at most one invocation of each

command may be running at a given time. It was intended that a duplicate command

would cause the already-running program's interface to be brought to the front of the

display. However, this is not implemented.

5



3. Ask BMS to invoke programs. (Optional.)

4. Receive messages. (Optional.)

5. Unregister. (Required.)

To build such a program, one must:

1. Compile with the needed packages (for Ada) or header �les (for C).

2. Link with the BMS library.

Instructions for creating Ada and C clients are below.

4.1 Ada Clients

4.1.1 Compiling and Linking

Your client must \with" the BMS client package:

with BMS_Client;

To allow the Ada compiler to locate this package and other important

�les, add the libraries

/u/zoo/arcadia/Q/build.sun4-sunada1.1

/u/zoo/sdl/projects/bms/ada

to your library search path.

When linking your client, you will need the Q library. Use the linker

(a.ld) 
ags:

-L/u/zoo/arcadia/Q/build.sun4-cc

-lQ

6



4.1.2 Registration and Unregistration

First, declare variables to contain your client's unique BMS registration ID,

and one or more messages:

id : BMS_Client.BMS_ID;

message : BMS_Client.BMS_MSG;

To register:

id := BMS_Client.StartSession;

if id < 0 then

Put_Line("Could not contact BMS.");

else

Put("I am registered as client ");

Put(id, width => 0);

Put_Line(".");

end if;

Registration may fail for several reasons, all of which cause a negative value

to be returned by StartSession():

2

2

The author recognizes that the use of return codes instead of exceptions is not good

Ada style. However, return codes were used for uniformity in the C and Ada interfaces,

since C does not support exceptions.

7



id value Meaning of error

BMS START NO IDS BMS has no more registration ID's

left. The limit is statically de�ned as

the constant MAX BMS REGISTERED in

the �le bms-interface.h. Currently,

the value is (arbitrarily) 100.

BMS START NO ENV You forgot to de�ne a value for the en-

vironment variable BMS CODE NUMBER.

See Section 5, page 15.

BMS START NO POSITIVE You made an error de�ning the envi-

ronment variable BMS CODE NUMBER: it

must be a positive number. See Sec-

tion 5, page 15.

BMS START NO SERVER BMS could not be contacted. Is it

running? See Section 5, page 15.

BMS START ILLEGAL PROTOCOL You speci�ed an unknown communi-

cations protocol in your BMS PROTOCOL

environment variable. See Section 5,

page 15.

To unregister:

BMS_Client.EndSession(id);

4.1.3 Creating and Destroying Messages

To create a message,

str : string(1 .. BMS_Client.BMS_MAX_STRING_SIZE);

len : natural;

message : BMS_Client.BMS_MSG.

Put("Give me a message to send: ");

Get_Line(str, len);

message := BMS_Client.CreateMessage(

BMS_Client.BMS_COMMAND_BROADCAST,

str(1..len));

if message = BMS_Client.BMS_MSG_NULL then

8



Put_Line("Could not create a message.");

else

Put_Line("I created a message.");

end if;

To destroy a message after you no longer have a need to send it,

BMS_Client.DestroyMessage(message);

The rules of message creation and destruction are:

1. CreateMessage() and DestroyMessage() must appear in matched

pairs. The two corollaries are:

� ALWAYS destroy (eventually) all messages that you create. If

you assign the value of CreateMessage() to the same variable

twice in a row, you'll lose the �rst message and waste memory.

� NEVER destroy a message that you yourself did not create with

CreateMessage() (for example, that you obtained by calling

GetNextMessage()). You will crash.

2. Once a message is created by CreateMessage(), it may be safely used

(that is, passed to SendMessage()) any number of times before you

destroy it with DestroyMessage().

4.1.4 Sending Messages

To send a message (after creating it),

if not BMS_Client.SendMessage(id, message) then

Put_Line("I FAILED to send the message.");

else

Put_Line("I sent the message successfully.");

end if;

9



4.1.5 Receiving Messages

To check whether a message is waiting for you, without removing it from

the queue:

if BMS_Client.MessageWaiting(id) then

Put_Line("There is a message waiting.");

else

Put_Line("There are NO messages waiting.");

end if;

To receive the next message in your message queue:

message := BMS_Client.GetNextMessage(id);

if message = BMS_Client.BMS_MSG_NULL then

Put_Line("I could not find a message!");

else

Put_Line("I got a message: " &

BMS_Client.BMS_DATA(message));

end if;

It is not necessary to call MessageWaiting() before GetNextMessage(),

since GetNextMessage() will return BMS MSG NULL if there are no messages

waiting. For example, to receive all of your queued messages:

loop

message := BMS_Client.GetNextMessage(id);

DoSomethingWith(message);

exit when message = BMS_Client.BMS_MSG_NULL;

end loop;

Messages returned by GetNextMessage() are not owned by the client,

and must not be destroyed by DestroyMessage().

4.1.6 Invoking Programs

To invoke a program, �rst create an invocation message,

10



Put("Give me a program to invoke (e.g., xterm): ");

Get_Line(str, len);

message := BMS_Client.CreateMessage(

BMS_Client.BMS_COMMAND_INVOKE,

str(1 .. len));

if message = BMS_Client.BMS_MSG_NULL then

Put_Line("Could not create the message.");

else

Put_Line("I created an invoking message.");

end if;

and then send it to BMS,

if not BMS_Client.SendMessage(id, message) then

Put_Line("FAILED to invoke the program.");

else

Put_Line("Tried to invoke the program.");

end if;

This message must eventually be destroyed by DestroyMessage().

4.1.7 A Complete Example Client

A complete example is found in the �le:

/u/zoo/sdl/projects/bms/ada/sample-client.a

4.2 C Clients

4.2.1 Compiling and Linking

Your client must include the BMS header �le:

#include "bms.h"

To allow your C compiler to locate this �le, use the 
ag:

-I/u/zoo/sdl/projects/bms/c

11



typically as part of your CFLAGS macro in your Make�le. When linking your

program, you must link with the BMS and Q libraries. Use the linker 
ags

-L/u/zoo/sdl/projects/bms/c

-L/u/zoo/arcadia/Q/build.sun4-cc

-lbms

-lQ

(Note: some C compilers have trouble with multiple -L 
ags. If you use

the above 
ags and some libraries are not found, even though you are sure

that the libraries exist, you may have encountered this bug. To work around

it, specify the complete pathname of one of the libraries, rather than using

the -l syntax.)

4.2.2 Registration and Unregistration

First, declare variables to contain your client's unique BMS registration ID,

and one or more messages:

BMS_ID id;

BMS_MSG message;

To register:

id = BMS_StartSession();

if (id < 0)

printf("Could not contact BMS.\n");

else

printf("I am registered as client %d\n", id);

Registration may fail for several reasons, all of which cause a negative value

to be returned by BMS StartSession(). These values are given in the table

in Section 4.1.2, page 7.

To unregister:

BMS_EndSession(id);

12



4.2.3 Creating and Destroying Messages

To create a message,

message = BMS_CreateMessage(BMS_COMMAND_BROADCAST,

"This is my message");

if (!message)

printf("Could not create a message.\n");

else

printf("I created a message.\n");

To destroy a message after you no longer have a need to send it,

BMS_DestroyMessage(message);

Important rules (semantics) for creating and destroying messages are

given in Section 4.1.3, page 9. The semantics are very similar to those of

the standard C functions malloc() and free(). This section is mandatory

reading!

4.2.4 Sending Messages

To send a message (after creating it),

if (!BMS_SendMessage(id, message))

printf("I FAILED to send the message.\n");

else

printf("I sent the message successfully.\n");

4.2.5 Receiving Messages

To check whether a message is waiting for you, without removing it from

the queue:

if (BMS_MessageWaiting(id))

printf("There is a message waiting.\n");

else

printf("There are NO messages waiting.\n");

13



To receive the next message in your message queue:

message = BMS_GetNextMessage(id);

if (!message)

printf("I could not find a message!\n");

else

printf("I got a message: <%s>\n",

BMS_DATA(message));

It is not necessary to call the function BMS MessageWaiting() before

BMS GetNextMessage(), since BMS GetNextMessage() will return NULL if

there are no messages waiting. For example, to receive all of your queued

messages:

while ((message = BMS_GetNextMessage(id)) != NULL)

DoSomethingWith(message);

Messages returned by BMS GetNextMessage() are not owned by the

client, and must not be destroyed by BMS DestroyMessage().

4.2.6 Invoking Programs

To invoke a program, �rst create an invocation message,

message = BMS_CreateMessage(BMS_COMMAND_INVOKE,

"xterm");

if (!message)

printf("Could not create the message.\n");

else

printf("I created an invoking message.\n");

and then send it to BMS,

if (!BMS_SendMessage(id, message))

printf("BMS FAILED to invoke an xterm.\n");

else

printf("BMS tried to invoke an xterm.\n");

This message must eventually be destroyed by BMS DestroyMessage().

14



4.2.7 A Complete Example Client

Complete examples are found in the �les:

/u/zoo/sdl/projects/bms/c/sample-client.c

/u/zoo/sdl/projects/bms/c/little-client.c

5 Running BMS

Each user (really, each user ID) may run at most one invocation of BMS

at any given time. If several BMS's are run under the same user ID, then

any BMS clients run under that user ID will register nondeterministically

with one BMS or the other. This behavior is probably not desirable.

However, multiple BMS's may run on the same machine, provided they

are being run by di�erent users. Client programs run by a given user will

communicate only with the BMS run by that user. These limitations are

inherent in the implementations of BMS and Q.

There are three steps to running BMS that must be done before any

clients may register:

1. Each user must choose a unique code number that identi�es his/her

invocation of BMS. It is accomplished by de�ning a positive integer

value for the environment variable BMS CODE NUMBER. For example, if

you use the Korn shell:

$ BMS CODE NUMBER=13579

Once you have de�ned this number, you can forget it | its use is

completely invisible to the clients.

2. Optionally choose a communications protocol for BMS to use: either

TCP or UDP. (If you don't know what these are, then ignore this item.)

This is done by de�ning the environment variable BMS PROTOCOL to be

either TCP or UDP. For example, if you use the Korn shell:

$ BMS PROTOCOL=TCP

By default (if no environment variable is de�ned), UDP is used.

15



3. Invoke BMS by typing:

$ bms &

BMSis now running and ready to accept registrations and provide ser-

vices to clients.

6 Limitations

Due to various design decisions, BMS usage is restricted in the following

ways:

1. Because BMS is built on top of Q, it runs only under SunOS and

supports only C and Ada clients.

2. BMS and all its associated clients must be invoked under the same

UNIX user id. See Section 5, page 15.

3. When invoking a program, BMS treats all whitespace characters in

the command as word delimiters, even if the whitespace is contained

within quotes. See Section 3, page 4, item 4.

4. When asking BMS to invoke a program, there is no way for the client

to know whether the invocation was successful or not. (However, if

the program itself happens to register as a BMS client, some kind of

handshake could be implemented.)

5. BMS provides no system-friendly method for clients to wait for in-

coming messages. Clients may busy-wait or use facilities provided by

other programming libraries (such as window systems).

7 Extensions

Barbara Lerner has written an Ada package called BMS Interface that pro-

vides a handshake routine and other features (raising exceptions instead

of using error codes, support for point-to-point communication, �ltering of

messages sent by oneself).

16



References

[1] Colin Gerety. HP SoftBench: A New Generation of Software Develop-

ment Tools. SoftBench Technical Note Series SESD-89-25, Revision 1.4,

Hewlett-Packard, November 1989.

[2] Barbara Staudt Lerner. Principles of Type Evolution. Design document

for TESS, in progress.

[3] M. Maybee, L. J. Osterweil, and S. D. Sykes. Q: AMulti-lingual Interpro-

cess Communications System for Software Environment Implementation.

Technical Report CU-CS-476-90, University of Colorado, Boulder, June

1990. Currently undergoing review for publication in Software Practice

and Experience.

[4] Alexander L. Wolf, Lori A. Clarke, and Jack C.Wileden. Ada-Based Sup-

port for Programming-in-the-Large. IEEE Software, 2(2):58{71, March

1985.

17


