
Building A Demo:

A Comparison Of Three

Software Integration Mechanisms

Daniel J. Barrett

Computer Science 791N

Jack Wileden, Professor

December 15, 1993

(printed February 6, 1995)

Abstract

This paper describes my experience in using ToolTalk, Polylith,

and Q to integrate the components of a large software system. This

experiment uncovered practical details about these integration mech-

anisms that are not obvious from their literature.

1 Introduction

The problem of high-level communication between concurrently executing

programs has been addressed by many ([4], [5], [10], [11], et. al.). Recently,

the term megaprogramming [2, 14] has been invented to describe the inte-

gration of large, diverse software systems or megamodules [14]. Whether

existing software integration mechanisms can handle the rigors of megapro-

gramming has yet to be seen.

As an experiment, three such integration mechanisms | remote proce-

dure calls (RPC) [13], ToolTalk [5], and Polylith [10] | were each used

to integrate a large software system called the Precise Interface Control

(PIC) Demo [15]. This paper discusses each mechanism and evaluates its

suitability for the task.

1



2 De�nitions

For the purposes of this paper, an integration mechanism is a software entity

that is used to permit two or more programs to communicate. The unit

of data communicated from one program to another is called a message.

Messages have a name and zero or more parameters .

There are two steps to integrating several programs. First, the programs

are given the ability to participate in communication. Second, the nature of

the communication may be speci�ed: connections between particular pro-

grams, a message language understood by the programs, actions to be taken

on receipt of particular messages, etc. Some mechanisms clearly separate

these two aspects, and some do not.

3 The PIC Demo

The SDL PIC Demo is an on-line demonstration created by the Software

Development Lab (SDL) of the Computer Science Department at the Uni-

versity of Massachusetts. The Demo consists of seven C and Ada programs,

comprising 100,000 lines (4 megabytes) of source code, running concurrently

on a Sun SPARCstation. These programswork together to demonstrate Pre-

cise Interface Control (PIC) [15], a paradigm which gives a software engineer

control over the import and export behavior of source code modules.

The Demo follows a client-server architecture in which are clients and

an Ada program is the server. The programs involved in the Demo are:

� Server, written in Ada, which manages (sequentializes) access to a

data repository.

� Chooser, Epic, PIC Edit, and PIC Results, all written in C, com-

prising a graphic user interface for Server.

� Populate, written in C, for \initializing" the Demo: it induces Server

to create the data repository.

� Monitor, written in C, for tracing the progress of the Demo.

The C programs are collectively called the PIC clients , the C clients , or

2



simply clients when the term is unambiguous.

1

The use of several languages to create the Demo was not a carefully

planned tactic, but a necessity thrust upon the designers due to software and

language constraints. Server was created long before the other programs. It

was written in Ada because that is the primary language supported by SDL.

The clients were written in C because of the need for a graphic interface,

available via the X window system.

Four classes of communication are used in the Demo:

1. The PIC clients need repository information from Server. The infor-

mation includes strings and large arrays of records.

2. The PIC clients need to share information about the state of the Demo:

the current source code module name, occurrences of events, etc. In

addition, Server occasionally announces new state information.

3. The PIC clients need to invoke one another. For example, Epic has

menu items for invoking an editor or a results browser.

4. Server communicates with a repository.

Class 1 is point-to-point. An individual client directly requests data from

Server and receives it synchronously. Data types range from simple integers

and strings to large arrays of records. Class 2 concerns information that all

the clients need to know \simultaneously," so an asynchronous broadcast

mechanism was deemed appropriate by the Demo designers. The data being

shared here are strings only. Class 3 requires the transmission of strings to

the UNIX shell. Finally, Class 4 is handled entirely within Server and is

not discussed in this paper. See Figure 1, page 4. Light arrows represent

Class 1 communication, and bold arrows represent Class 2 communication.

From a megaprogramming point of view, the PIC Demo may be viewed

in several ways. On the one hand, each of the seven programs may be

considered a \megamodule" [14] since it is a separate program. However, the

PIC clients are not very large and have relatively simple purposes compared

to Server. So an alternate way of viewing the Demo is to consider Server

as one megamodule, and the set of clients as another. The clients have

1

We later discuss other kinds of clients, such as \BMS clients."

3



Invoker

Chooser

Epic
PIC

Results

PIC

Edit
Monitor

PIC Server

repository

Populate

Figure 1: The Communication Architecture of the PIC Demo.

4



a shared ontology [14] with their view of the server and their broadcast

communication system.

The PIC Demo was originally integrated using an RPC mechanism called

Q [6], which allows communication of data values between C and Ada pro-

grams. Using Q as a foundation, a broadcast message server called BMS [1]

was created to handle communication among the clients. For communica-

tion between the clients and Server, a software interface called PICPocket

was created, again using Q. An evaluation of this integration mechanism is

found in Section 5.

4 Assumptions

Due to speci�cation changes in the SDL Ada support libraries, PIC's Server

source code cannot be compiled until it is updated to reect these changes.

Since this update would be fairly major and time-consuming, I wrote a

\fake" PIC program to stand in for the real thing. It is written in Ada,

and mimics PIC's message interface, but does no actual calculations nor

repository management. Its responses are hard-coded. Other than that, it

appears to the clients as the real Server.

When Server is once again compilable, I will update my work to use it

so the true Demo can be run. I expect this update to be very little work.

5 Sun RPC, Q, and the SDL BMS

Q [6] is an RPC mechanism closely patterned after Sun's XDR [12]. It is

nearly function-call-compatible with XDR; but unlike XDR, Q provides a

programmer's interface for Ada. This makes Q a potentially suitable choice

for integrating the SDL PIC Demo.

Q RPC works in the following way:

1. The program declares a \handle" variable.

2. Individual primitive data values (integer, char, string) are packed into

the handle, one at a time.

5



3. An synchronous function call transmits the handle to a second pro-

gram, and optionally receives a second handle containing results from

the second program.

4. The program unpacks the results, one at a time, in FIFO order.

There is no direct support for passing structured data such as arrays and

records. To pass such a value via Q, its individual �elds must be packed

into (and subsequently unpacked from) the handle one at a time.

5.1 Integration

Q provides no \broadcast" mechanism, and one is needed among the clients.

So I wrote BMS, a string-broadcasting message server. BMS is an exe-

cutable program written in C, and it has the following abilities.

� Programs that wish to use broadcast message service must register

withBMS, and unregister when they are no longer interested inBMS

messages. A registered program is called a BMS client (to be dis-

tinguished from a PIC client). Registration and unregistration are

dynamic, accomplished by any BMS client while it is executing.

� BMS accepts two kinds of messages: broadcast and invoke. A broad-

cast message is a string that is transmitted to all registered clients.

An invoke message is a string that is passed to the UNIX shell and

executed. Invoke messages are used so PIC clients can invoke each

other.

� BMS delivers messages in the same order that it receives them. Broad-

cast messages are automatically queued until retrieved by each regis-

tered client. Every BMS client is guaranteed to receive all messages,

and only those messages, transmitted while the BMS client is reg-

istered. (However, since BMS clients poll for their messages, it is

possible that the client will choose not to examine all its available

messages.)

Integrating the PIC clients was fairly straightforward. I wrote a small

library in C of client-related functions for registration, message sending, and

message receiving. A client invokes the register function and enters an event

6



loop, waiting for incoming broadcast messages from BMS. Upon message

receipt, some action is taken which may involve broadcasting other messages.

Server itself needed to be a BMS client, so I wrote an Ada interface

nearly identical to that for the C client library. The main problem encoun-

tered here was the incompatibility between Ada and C string formats. Use of

SDL's DynamicStrings Ada abstract data type eased these problems some-

what, but some hacks were necessary, including �lling unused Ada string

elements with ASCII nulls, and truncating Ada strings. There were also

some problems involving C NULL strings and Ada empty strings.

Providing the point-to-point interface between Server and the clients

was fairly straightforward. Analogous C and Ada record types were de�ned,

and C and Ada subroutines were written to pack arrays of records into

handles transmit them via Q, and unpack them. The software interface

responsible for these tasks is called PICPocket.

5.2 Pros & Cons

BMS has some inherent advantages:

� Dynamic registration and unregistration.

� From time to time, Server needs to ignore incoming messages (turn

o� its event loop) and cause incoming messages to be queued during

this time. This would be easy to implement, but how can one inform

Server (via a message) to resume processing messages, if Server is

not listening to messages? It seems we have a Catch-22 situation.

But Q has a feature which causes ordinary messages to be ignored,

but special priority messages to be received. By making the \resume

processing" message a priority message, the problem was solved.

� Q's handle-passing function is synchronous: a handle is sent and an-

other handle is received in a single operation. Other mechanisms such

as ToolTalk do not have such a feature.

Some negative aspects of the Q/BMS approach include:

� BMS limits messages to be strings.

7



� Each client is responsible for parsing its own message strings to add

and/or retrieve parameters. BMS does not assist in this process in

any way.

� BMS does no \�ltering" of messages. Every registered BMS client

receives every broadcast message, even those that it sends.

� Q has a static limit on the amount of data that may be transmitted

via a handle. The SDL PIC Demo exceeded this limit regularly, since

the arrays of records managed by PICPocket were very large.

6 ToolTalk

ToolTalk [5] is an integration mechanism created by Sun Microsystems. It

is a library of over 200 functions for message passing. Its operation is similar

to that of Q: data values are packed into messages that get transmitted.

However, ToolTalk has several notable di�erences from Q and BMS:

1. All ToolTalk message passing is asynchronous.

2. Clients may register not only for general ToolTalk service, but also

to receive only particular classes of messages. This feature provides

message �ltering , so clients needn't receive every broadcast message.

3. Registration for message classes may be done statically (at client com-

pile time) or dynamically (at client run time).

4. ToolTalk clients may be automatically invoked when their services

are needed. (However, this auto-invoke service is too limited: see

Section 6.2, page 10.)

5. Message parameters may be added or retrieved by random access (the

index of the parameter). Q allows message parameters to be accessed

by FIFO only.

6. ToolTalk has no Ada interface.

8



6.1 Integration

Integrating the C clients provided several challenges. The �rst was deciding

whether to use static or dynamic registration. Static registration provides

several additional features, such as the auto-invocationmentioned in the pre-

vious section. However, experiments with the static registration mechanism

revealed two serious limitations.

1. ToolTalk uses a at namespace for messages. That is, if two com-

pletely unrelated programs just happen to use the same message name,

there is a silent (and undocumented) conict with unpredictable be-

havior.

2. ToolTalk's auto-invocation mechanism can invoke only one copy of a

given program.

As a result of these limitations, I decided to use dynamic registration.

For consistency in message names, I wrote a small library of functions

for ToolTalk registration, broadcasting, and message receipt, and all PIC

clients used it. To handle program invocation, I wrote a program called

Invoker, a ToolTalk client that passes its incoming messages to the UNIX

execvp() function. Invoker was largely a reworking of the invocation code

from BMS.

Once the initial work above was done, integrating the PIC clients with

ToolTalk became as easy as withBMS. In fact, the source code of a BMS-

integrated client could be translated into a ToolTalk-integrated client al-

most automatically. (This was a happy coincidence, since at the time I wrote

BMS, I was not familiar with ToolTalk.)

The next challenge was to create an Ada interface for ToolTalk. This

was feasible thanks to the Ada pragma interface feature, which allows in-

vocation of, and parameter passing to and from, functions written in other

languages. An important implementation decision was whether to write

pragmas for the individual ToolTalk functions, or for higher-level, more

complex functions that invoked ToolTalk functions. I chose the latter ap-

proach to simplify the parameter passing, since I did not know the inter-

nals of ToolTalk messages and did not want to write parallel ToolTalk

datatypes in Ada. In retrospect, this decision may have been the wrong

one, since I found myself modifying my complex functions numerous times

to accommodate new, unexpected features and parameters.

9



Creating this ToolTalk Ada interface was a royal pain, requiring much

low-level \bits 'n bytes" experimentation since documentation was scarce.

Transmitting strings between C and Ada was particularly di�cult, but the

Ada C Strings package helped a lot. Variable parameters also caused prob-

lems and necessitated heavy use of the Ada 'address attribute.

To handle the point-to-point communication between Server and its

clients, I essentially reimplemented PICPocket with ToolTalk instead of

Q. However, there was one main di�culty in doing this: all ToolTalk

message passing is asynchronous, whereas Q had a synchronous send-and-

receive-handle function. As a result, I created twoToolTalk communication

channels per client: \in" and \out." Server registers to receive messages

on all \out" channels, and each client on its \in" channel. To request data

from Server, a client sends a request on its \out" port and then busy-waits

for a response on its \in" port.

An unexpected problem was encountered after the point-to-point inter-

face was implemented. For some unknown reason, certain messages were

not being received. The problem was traced to the fact that each client was

registering for ToolTalk service twice: once for broadcasting, and once for

point-to-point. The second registration was being ignored: it is semanti-

cally incorrect to register twice. (This point is undocumented.) So unlike

Q, ToolTalk does not support multiple sessions.

6.2 Pros & Cons

Advantages of using ToolTalk to integrate the Demo include:

� Dynamic registration and unregistration for clients.

� Dynamic registration and unregistration for individual messages, re-

ducing message tra�c in the Demo.

� Relatively easy to use.

Disadvantages include:

� No synchronous message passing.

� No Ada binding.

10



� A at namespace for message names. If two di�erent clients have

messages with the same name, a message sent to the �rst client might

be routed to the second incorrectly.

� Only one instance of a program can be auto-invoked.

� Installing static registration �les (\ptype �les") involves the use of

arcane UNIX commands (such as sending a \kill -USR2" signal to the

ttsession process).

� Clients must provide their own method for waiting for the next mes-

sage, since ToolTalk does not provide one. It is expected that one will

use an X toolkit function for this purpose. I used simple busy-waits

for the purposes of this experiment.

� I could discover no way to implement the \suspend" and \resume"

Server operations. A brute-force method | \suspend" causes Server

to unregister for all messages except the \resume" message | failed

for unknown reasons. The semantics of unregistering in ToolTalk are

not well documented.

7 Polylith

Polylith [10] was created by Jim Purtilo of the University of Maryland. It

is an implementation of the software bus concept [9] in which programs may

communicate point-to-point via named \bus channels."

Program integrationwithPolylith is accomplished in the followingman-

ner:

1. One or more bus channels are invented by choosing arbitrary names.

2. Each participating program's source code is modi�ed to insert function

calls to read from and write to speci�c bus channels. These programs

are then compiled and linked with a Polylith library.

3. Using a language calledModule Interconnection Language (MIL), each

program's bus input and output (that is, the number and types of

the parameters) are speci�ed. The resulting speci�cation is called a

service. A service may be thought of as a wrapper around a program,

specifying its Polylith input and output interfaces.

11



4. Using MIL, services are instantiated to create tools .

5. Using MIL, connections between di�erent tools' input and output

channels are speci�ed.

6. The MIL speci�cations are compiled to produce a program which can

be interpreted by the Polylith bus program, bus. bus invokes all of

the desired tools and manages the communication among them.

These MIL speci�cations are largely independent of the programs they

refer to, so program interconnections may be changed without any modi-

�cation to their source code. At the same time, unlike Q and ToolTalk,

Polylith requires this interconnection information to be speci�ed statically.

This fact has important rami�cations that will be explored in the next sec-

tion.

Version 2.1 of Polylith was used for this experiment. See Section 7.3,

page 14 for important information about Polylith version 3.0.

7.1 Integration

Polylith was the most challenging of the integration mechanisms to apply

to the PIC Demo. Primarily, the Demo has numerous dynamic features:

1. Clients invoke other clients as needed.

2. Multiple instances of clients (namely PIC Edit) are needed, but the

number of instances is not known before runtime.

3. Arrays of structures are passed between PIC and its clients, but the

sizes of these arrays are not known before runtime.

4. The PIC clients use command-line arguments. However, in the current

implementation,Polylith \steals" all command-line arguments for its

own purposes. This is a conict. Polylith's object attribute features,

which are often used in place of command-line arguments [7], unfortu-

nately must be declared statically in a program's MIL speci�cation.

2

2

There is reportedly another Polylith feature called polyargs which is dynamic enough

to use for the PIC Demo. I am awaiting information about it.

12



All of these properties make the integration of the PIC Demo with

Polylith very di�cult. In fact, one could go as far as to say that Polylith

version 2.1 is the wrong mechanism for the job. Nevertheless, I accomplished

some integration tasks, which I describe.

First, I adapted the C clients to broadcast message strings via Polylith.

This was challenging because Polylith 2.1 does not support multicast: it

is strictly a point-to-point mechanism. To get around this problem, I used

the following brute-force implementation:

1. For each of the N clients, create N � 1 incoming and N � 1 outgoing

bus channels.

2. Specify connections from every client to every other client via unique

bus channels.

3. Write a custom \multicast" function which, given a message, iterates

through all the incoming bus channels and transmits the message into

all of them except the sender's own channel.

4. Use Polylith's mh readselect for message receipt, so the client need

not have the identity of the sender hard-coded.

In addition, I had to specify the number of copies of multiply-invoked

clients (PIC Edit) statically, each with its own uniquely named bus chan-

nels. All in all, this method requires the explicit speci�cation of O(N

2

)

interface bindings which is both time-consuming and (I found) error-prone

to maintain.

In any event, I was able to get Polylith to invoke all the client programs

simultaneously (ignoring the issue of dynamic invocation for the moment).

to broadcast messages. However, I immediately encountered the \command-

line argument" problem described above (dynamic feature # 4 on page 12).

The clients would execute, display \usage" messages, and quit. This caused

communication to hang, since (presumably) bus does not expect its tools to

terminate abnormally.

At this point, acknowledging the current di�culties and aware that fur-

ther problems (e.g., the array length problem) lay ahead, I abandoned the

use of Polylith to integrate the PIC Demo. This should not be seen as

a denigration of Polylith's capabilities, but rather as a realization of its

13



inappropriateness for this particular application. Polylith has been shown

to be useful for other real-life programming problems [8].

7.2 Pros & Cons

Polylith has some important strengths:

� Once application programs have been modi�ed to contain bus read

and write calls, it is very convenient to create and modify connections

between programs using MIL. This property makes Polylith good

for rapid prototyping. It also eased my Polylith learning curve, and

aided in debugging, since it was trivial to write small test programs to

communicate with the actual programs in the PIC Demo.

� The explicit MIL speci�cation of inter-program communications may

aid global static analysis of a Polylith-integrated system. I have not

heard of any work in this area, but it seems like a logical step to take.

� There are bindings for several languages including C, Ada, and Lisp.

Polylith 2.1's disadvantages include:

� The lack of dynamism in registration/unregistration, program invoca-

tion, array size, etc.

� Lack of multicast, and the O(N

2

) problem it implies.

� The command-line argument problem.

� Bus channel names must be identical in a program's source code and

its MIL service speci�cation, but Polylith provides no way to enforce

this constraint automatically.

Several of these disadvantages have been addressed in Polylith 3.0.

7.3 About Polylith 3.0

As this document went to press, Jim Purtilo sent me a draft of the manual

for Polylith 3.0 [3]. This version contains some signi�cant changes that will

makePolylithmuch more suitable for the PIC Demo and other applications

with similar requirements for dynamic behavior. New features include:

14



� Multicast.

� Dynamic registration and unregistration for receipt of multicast mes-

sages.

� Dynamic modi�cation of inter-program communication links while the

programs are running.

� A language binding for LISP.

Once version 3.0 is o�cially released, I plan to re-evaluate it with respect

to the PIC Demo.

8 Analysis

The following table summarizes some of the signi�cant features of the three

integration mechanisms studied:

Feature Q/BMS ToolTalk Polylith

Modify Source? yes yes yes

Program

Registration

dynamic static,

dynamic

static

Message Filtering no yes no

Program

Invocation

dynamic via

BMS

static static via bus

Communication point-to-point,

broadcast

multicast point-to-point

Sender/Receiver

Synchronization

synchronous,

asynchronous

asynchronous synchronous,

asynchronous

Structured Param-

eter Handling

manual manual built-in

Parameter Access sequential random random

Speci�cation

Of Communication

Links

no no yes

Access Control no no yes

\Modify Source" indicates whether or not the source code of programs

must be modi�ed in order to participate in communication using the given

15



mechanism. All three mechanisms surveyed require source code modi�ca-

tion. Other mechanisms such as SoftBench [4] do not, but they have other

limitations.

\Program Registration" and \Message Filtering" indicate how (if at all)

participating programs register for integration mechanism services in gen-

eral, and for receipt of particular messages, respectively. ToolTalk was the

most powerful of the mechanisms in this regard, although its static registra-

tion implementation is seriously awed (as described in Section 6.1, page 9).

It seems that registration for individual messages does not bene�t individ-

ual programs, since they still must parse the incoming message to determine

what it is, and what action to take. However, this registration does bene�t

the system as a whole, since �ltering means less message tra�c.

\Program Invocation" indicates how participating programs are invoked

by the mechanism. BMS provides an \invoke" message. ToolTalk provides

automatic invocation of one copy of a statically-declared program on �rst

receipt of a message. (I wrote Invoker to get around the limitations of this

method.) Polylith runs all its participating programs at once.

\Communication" and \Sender/Receiver Synchronization" indicate the

underlying communication protocols available to a programmer using the

mechanism.

\Structured Parameter Handling" indicates the mechanism's support for

passing arrays and records. Only Polylith provided built-in support for

these types. Q and ToolTalk require the participating programs to consider

arrays and records as collections of primitive types and pack the primitive

values into \boxes" or \handles" for transit to the receiver. The receiver

must then unpack the boxes manually. \Parameter Access" indicates the

order in which participating programs may insert or examine parameters in

a multiple-parameter message.

\Speci�cation Of Communication Links" indicates whether the mecha-

nism has support for an explicit speci�cation of the connections between

programs. Polylith does, but BMS and ToolTalk do not, making their

architecture and behavior harder to analyze.

Finally, \Access Control" indicates whether the mechanism enforces any

kind of protection of the data so unauthorized or unregistered programs

cannot read nor modify it. Only Polylith has access control, and of a

rudimentary sort: since bus invokes all participating programs and controls

16



their interactions as indicated in the MIL speci�cation, no outside program

has access to the data being passed. BMS and ToolTalk both allow any

program to register to receive any or all data being transmitted.

9 Conclusions

None of the surveyed integrationmechanisms is ideal for the SDL PIC Demo,

but each has its particularly helpful features. The BMS/PICPocket so-

lution was custom-made for the Demo, so it supports exactly the commu-

nication paradigms needed, but it lacks message �ltering and carries along

the limitations of Q. The ToolTalk solution addressed the limitations of

Q, but its lack of synchronous messaging and limitations in static regis-

tration are real drawbacks. Finally, Polylith provides some features that

Q and ToolTalk are missing | notably structured parameter passing and

explicit speci�cation of inter-program communication links | but its inher-

ently static nature makes it unsuitable for a project with so much dynamic

behavior.

In the future, I would like to continue this experiment by using Polylith

3.0, HP's SoftBench, and DEC's FUSE to integrate the PIC Demo. I

would also like to use the actual PIC server instead of my \fake" one, once

PIC has been adapted to use SDL's new Ada support libraries.

References

[1] Daniel J. Barrett. SDL BMS: A Simple Broadcast Message Server. Ar-

cadia Document UM-93-03, University of Massachusetts, Software De-

velopment Laboratory, Computer Science Department, October 1993.

[2] Barry W. Boehm and William L. Scherlis. Megaprogramming (Prelim-

inary Version).

[3] Charles Falkenberg, Christine Hofmeister, Chen Chen, Elizabeth

White, Joanne Atlee, Paul Hagger, and James Purtilo. The Polylith

Interconnection System: Programming Manual for the Network Bus.

University of Maryland, College Park, 3.0 edition, September 1993.

Draft.

17



[4] Colin Gerety. HP SoftBench: A New Generation of Software Devel-

opment Tools. SoftBench Technical Note Series SESD-89-25, Revision

1.4, Hewlett-Packard, November 1989.

[5] Astrid Julienne and Larry Russell. Why You Need ToolTalk. SunEX-

PERT Magazine, pages 51{58, March 1993.

[6] M. Maybee, L. J. Osterweil, and S. D. Sykes. Q: A Multi-lingual In-

terprocess Communications System for Software Environment Imple-

mentation. Technical Report CU-CS-476-90, University of Colorado,

Boulder, June 1990. Currently undergoing review for publication in

Software Practice and Experience.

[7] James Purtilo, December 1993. Personal communication.

[8] James Purtilo, Charles Falkenberg, Elizabeth White, William Ander-

sen, and Tess Ollove. An Exercise With Prototyping Technology. Tech-

nical report, University of Maryland, 1993. Draft.

[9] James Purtilo, Richard T. Snodgrass, and Alexander Wolf. Software

Bus Organization: Reference Model and Comparison of Two Existing

Systems. Technical Note 8, DARPA Module Interconnection Formalism

Working Group, November 1991.

[10] James M. Purtilo. The Polylith Software Bus. Technical Report

UMIACS-TR-90-65, University of Maryland, May 1990.

[11] Steven P. Reiss. Connecting Tools Using Message Passing in the Field

Environment. IEEE Software, July 1990.

[12] Sun Microsystems. XDR: External Data Representation Standard.

Technical Report RFC-1014, Sun Microsystems, Inc., June 1987.

[13] Sun Microsystems. RPC: Remote Procedure Call Protocol Speci�ca-

tion. Technical Report RFC-1057, Sun Microsystems, Inc., June 1988.

[14] Gio Wiederhold, Peter Wegner, and Stefano Ceri. Toward Megapro-

gramming. Communications of the ACM, November 1992.

[15] Alexander L. Wolf, Lori A. Clarke, and Jack C. Wileden. Ada-Based

Support for Programming-in-the-Large. IEEE Software, 2(2):58{71,

March 1985.

18


