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Abstract 

Interoperabil i ty is a fundamental  concern in many areas of 
software engineering, such as software reuse or infrastruc- 
tures for software development environments. Of particular 
interest to software engineers are the interoperabili ty prob- 
lems arising in polylingual software systems. The defining 
characteristic of polylingual systems is their focus on uni- 
form interaction among a set of components writ ten in two 
or more different languages. 

Existing approaches to support  for interoperabili ty are 
inadequate because they lack seamlessness: that  is, they 
generally force software developers to compensate explic- 
itly for the existence of multiple languages or the crossing 
of language boundaries. In this paper we first discuss some 
foundations for polylingual interoperability, then review and 
assess existing approaches. We then outline PolySPIN, an 
approach in which interoperabili ty can be made transparent  
and existing systems can be made to interoperate with no 
visible modifications. We also describe PolySPINner, our 
prototype implementation of a toolset providing automated 
support  for PolySPIN. We illustrate the advantages of our 
approach by applying it to an example problem and com- 
paring PolySPIN's  ease of use with that  of an alternative, 
CORBA-style approach. 

1 Introduction 

Large and complex software systems invariably consist of 
multiple software modules (programs, subprograms, collec- 
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tions of subprograms). For any number of reasons, such as 
a desire to reuse legacy components, or because part icular  
languages facilitate development of part icular  kinds of ap- 
plications, those modules may be writ ten in several different 
languages. As a result, the problem of cooperation among 
software modules of different languages - the multi-language 
interoperability problem - natural ly arises in such systems. 1 

Suppose two architecture companies, the Frank Fi rm and 
Lloyd Ltd., are contemplating a merger. Each company has 
important  software assets, including everything from per- 
sonnel information to design element descriptions to com- 
puter aided architectural design (CAAD) tools, tha t  the 
merged company, Frank Lloyd, Inc., will wish to integrate 
to form its own software infrastructure. While Frank's  as- 
sets are implemented in C++, Lloyd's are implemented in 
CLOS (Common Lisp Object System). If the merger is to 
be successful, Frank Lloyd must solve the multi-language in- 
teroperabil i ty problem, preferably in a way tha t  minimizes 
its impact on the newly merged software development staff. 
In particular,  a solution tha t  requires substantial  translat ion 
of existing code or data,  or tha t  forces significant retraining 
of any par t  of the staff, will threaten the competit ive advan- 
tage that  Frank Lloyd expects the existing assets to provide. 

In addressing multi-language interoperabil i ty problems, 
such as those confronting Frank Lloyd, we make several dis- 
tinctions. First ,  we differentiate situations in which a com- 
ponent writ ten in one language needs to access one or more 
components (subprograms, da ta  objects, etc.) writ ten in 
a single second language from those in which a component 
writ ten in one language needs to uniformly interact with a 
set of components writ ten in two or more different languages 
(which may or may not include the language of the first com- 
ponent). We refer to the former, more homogeneous situ- 
ation as multilingual interoperability, and the latter,  more 
heterogeneous situation, as polylingual interoperability. 2 In 
our Frank Lloyd example, a CAAD tool wri t ten in C++ 
that  invoked an aesthetics-assessment subprogram writ ten 
in CLOS would be an instance of multilingual interoperabil- 
ity. A CLOS program tha t  accessed personnel records, some 

l I n t e r o p e r a b i l i t y  p r o b l e m s  c a n  a lso  a r i se  in s y s t e m s  w r i t t e n  in a 
s ingle  l a n g u a g e  - -  for e x a m p l e ,  s y s t e m s  t h a t  s p a n  severa l  h a r d w a r e  
p l a t f o r m s  or severa l  d i a l ec t s  of t he  s a m e  l a n g u a g e .  T h i s  p a p e r  focuses  
on m u l t i - l a n g u a g e  i n t e r o p e r a b i l i t y ,  w h i c h  will h e n c e f o r t h  b e  r e f e r r ed  
to  s i m p l y  as " i n t e r o p e r a b i l i t y . "  

2Th i s  t e r m i n o l o g y  is i n sp i r ed  b y  the  a n a l o g y  b e t w e e n  " u n i f o r m  
p roces s ing  i n d e p e n d e n t  of  d a t a  t y p e "  ( p o l y m o r p h i c )  a n d  " u n i f o r m  
p roces s ing  i n d e p e n d e n t  of l a n g u a g e "  ( p o l y l i n g u a l ) .  
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stored as C++ objects and others stored as CLOS objects, to 
assign employee office space would be a case of polylingual 
interoperability. 

Second, we distinguish approaches by their level of trans- 
parency  to software developers. Most current approaches 
force developers to be aware that  multiple languages are in- 
volved and to build their modules to surmount the language 
boundaries. Multilingual interoperabili ty may be achieved, 
for example, by using heterogeneous remote procedure calls, 
while polylingual interoperabili ty can be realized by enforc- 
ing the use of a common, foreign type model among the 
modules (e.g., as in CORBA [C1PCC+93]). 

If developers of a multi-language software system need 
not be aware of language differences between the software 
modules, we call the interoperabil i ty approach seamless.  For 
example, suppose tha t  two new CAAD tools under develop- 
ment at Frank Lloyd, called F o r m  and F u n c t i o n ,  are being 
writ ten in different object-oriented programming languages 
(say C++ and CLOS, respectively) and they must share ob- 
jects. In a typical multilingual system, the developers of 
F o r m  and F u n c t i o n  must write special code for accessing 
each others '  objects across the language boundary, either di- 
rectly (using low-level foreign function calls, for example) or 
through an intermediary (e.g., a CORBA ORB). In a seam- 
less approach, however, F o r m  and F u n c t i o n  could each ac- 
cess C++ and CLOS objects as if there were no language 
barrier. To F o r m ,  for instance, there would be no discern- 
able difference when invoking the methods of a C++ or a 
CLOS object. 

Such seamlessness has long been a highly desirable prop- 
erty of interoperability, but  it has rarely been achieved. Our 
approach, PolySPIN, t ransparent ly  and automatical ly mod- 
ifies a set of objects, implemented in diverse languages, so 
they can be accessed seamlessly by software modules of dif- 
ferent programming languages. That  is, PolySPIN allows 
a programmer to proceed as if the languages of the object 
and the accessor were the same. All software modules use 
only their native type systems to access these objects, not a 
common (but foreign) type system like CORBA's  IDL, and 
existing modules need not be modified to do it. A prototype 
toolset support ing the approach currently automates imple- 
mentat ion of seamless interoperabili ty for C++ and CLOS 
objects. 

The remainder of the paper  is organized as follows. In 
Section 2, we discuss some foundations for polylingual inter- 
operability. Section 3 reviews existing approaches to inter- 
operability, focusing part icular  at tention on CORBA-style 
approaches. Section 4 outlines our approach to seamless 
interoperabil i ty in polylingual systems and describes the 
toolset automat ing its use. Section 5 provides an example 
application of our approach and compares it to a CORBA- 
style approach. Section 6 summarizes the current status of 
PolySPIN and discusses some future directions for this work. 

2 Polylingual Interoperability 

In this section, we provide an overview of polylingual inter- 
operabili ty concepts. We first offer a simple but  useful classi- 
fication of interoperabil i ty situations. We then consider sev- 
eral dimensions of interoperability, which we summarize in 
a model representing a generic polylingual interoperabili ty 
situation. These foundations provide a basis for subsequent 
discussion of various approaches to interoperability: both 
existing approaches (Section 3) and PolySPIN (Section 4). 

2.1 Classification of Interoperability Situations 

The decision to cause two software modules A and B to in- 
teroperate can be made at three different times in the soft- 
ware lifecycle: before A and B have been written, after A 
but  before B has been written, or after both A and B have 
been written. The first scenario is the easiest  case: since 
neither A nor B exists yet, a developer can specifically de- 
sign them to interoperate. Developers are seldom fortunate 
enough to be able to design both interoperat ing modules 
from scratch, however. The second scenario is a more com- 
m o n  case, in which a new software module B must be de- 
signed to interoperate with legacy system A. In this case, it 
is desirable that  legacy module A need not be modified; but  
unless A was designed with future interoperabil i ty in mind, 
this is unlikelyJ 

Our approach to automated support  for interoperabil i ty 
in polylingual systems addresses the th i rd  and most diffi- 
cult of the three scenarios, sometimes called megaprogram- 
ruing [BS92, WWC92]. Since both A and B exist, we want to 
modify them as lit t le as possible to make them interoperate.  
Our approach allows A and B to interoperate  with no mod- 
ifications visible to the developer nor the modules. Existing 
approaches such as CORBA are problematic in this scenario 
because they are intrusive, requiring both A and B to be 
modified in a significant way: t ranslat ing some of their  da ta  
type definitions into another language (IDL), and changing 
the protocol by which those da ta  are accessed (ORB calls 
instead of native language constructs).  

2.2 Dimensions of Polylingual Interoperability 

As a basis for understanding, comparing and developing in- 
teroperabil i ty approaches, we have found it helpful to view 
interoperabili ty as having several dimensions. Our model of 
interoperability, depicted in Figure 1, i l lustrates this view. 4 
In this model, one or more software modules, called acees- 
sots ,  need to access other software modules, called objects. 
(A given software module can be both an accessor and an 
object.) The accessors can be writ ten in diverse languages 
and, since we are modeling polylingual interoperability, the 
objects are implemented in at least two different languages. 5 

The four central subcomponents in Figure 1 represent 
dimensions of interoperability: 

Interlanguage naming ( L o c a t o r ) :  Interoperabi l i ty  can- 
not occur without some means for accessors to locate 
or reference objects. Thus, an approach to polylingual 
interoperabili ty must include some mechanism for in- 
terlanguage naming (or its equivalent). In the model, 
that  mechanism is termed a Locator. 

Language information (Language A r b i t e r ) :  Although 
language differences between accessors and objects are 
hidden in polylingual systems, they must  be addressed 
at some level. Our model includes a mechanism for 
t ransparent ly associating language-specific information 
with a given object. This mechanism is termed a Lan- 
guage Arbiter.  

3Moreover,  even if legacy m o d u l e  A were des igned wi th  in te roper -  
abi l i ty  in mind ,  t h a t  is no g u a r a n t e e  t h a t  it is an  a p p r o p r i a t e  kind of 
in te roperab i l i ty  to use wi th  fu tu re  m o d u l e  B.  

4We stress t h a t  this  is a concep tua l  model ,  not  to be i n t e rp r e t ed  as 
prescr ib ing  an  i m p l e m e n t a t i o n  s t ra tegy .  As will be seen in Sect ion 4, 
however ,  our  p ro to ty p e  i m p l e m e n t a t i o n  closely follows the  model .  

5If all the  ob jec t s  were i m p l e m e n t e d  in a single l anguage  different  
f rom t h a t  of the  accessors,  this  would be a mode l  of mul t i l ingua l  
in teroperabi l i ty .  
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Figure 1: Conceptual Model of Polylingual Interoperability 

I n t e r l a n g u a g e  invocat ion  (Communica tor ) :  If the ac- 
cessor and object are implemented in different lan- 
guages, an approach to interoperability must provide a 
mechanism for invoking operations across the language 
boundary, including marshalling and unmarshalling of 
arguments. In the model, this mechanism is termed a 
Communicator. 

T y p e  compat ib i l i ty  ( T y p e  M a t c h e r ) :  In order to have 
uniform access to objects, the data types utilized by an 
accessor and its accessed objects must be sufficiently 
compatible that  communication between them is sen- 
sible and meaningful. In the model, satisfying this 
requirement is the role of the Type Matcher. 

2.3 Scope of Polylingual Interoperability 

Our polylingual interoperability research focuses on inter- 
language issues. It does not directly address the full prob- 
lem of schema mismatch, in which models of objects having 
significant semantic differences, implemented in the same 
or different languages, must be reconciled. Rather, our ap- 
proach provides an organized mechanism for dealing with 
schema mismatch problems that arise solely from language 
differences. 

Our approach is designed to work best with languages 
that encapsulate operations within types, i.e., abstraction- 
oriented languages (e.g., Ada 83) and object-oriented lan- 
guages (e.g., CLOS, C++ or Ada 95). In order to apply this 
approach to older procedural languages that do not support 
encapsulation, such as C and FORTRAN, some mechanism 
like that provided by Polylith [Put94] would be needed for 
associating operations with datatypes. 

3 Existing Approaches to Interoperability 

A variety of approaches to interoperability have been devel- 
oped over the years [WWRT91]. Existing approaches tend 
to fall short of our goal of supporting seamless interoper- 
ability in polylingual systems, however. In this section, we 
describe several major categories of existing approaches in 
terms of our four dimensions of interoperability, and assess 
their effectiveness in achieving seamlessness. We then give 
more detailed consideration to CORBA-style approaches, 
since they not only come the closest of any existing ap- 
proach to supporting seamless interoperability in polylingual 

systems, but also are quite popular. We apply one such ap- 
proach, ILU, to an interoperability problem that  might face 
Frank Lloyd, and then assess its level of seamlessness. 

3.1 Overview of Existing Approaches 

Low-level approaches: Some languages provide a foreign 
function call interface, allowing a program p written in one 
language to invoke a subprogram s written in another. The 
object code modules of p and s are linked, and the foreign 
function call is accomplished within a single address space. 
For calling across address spaces, remote procedure calls 
[BN84] have been extended to cross language boundaries 
(e.g., [MHO96]). Both foreign function calls and remote 
procedure calls represent relatively low-level approaches to 
interoperability, and as a result they are generally far from 
seamless because application programmers frequently must 
deal with details of parameter marshalling and because com- 
plex data types (pointer-based data structures, ADTs) are 
not supported. In terms of our model, such approaches as- 
sist software developers with interlanguage invocation but 
provide little support for the other dimensions of interoper- 
ability. 

Messaging systems: Some systems accomplish interoper- 
ability by allowing software modules to send messages to 
each other or to a central message server that  routes mes- 
sages to their intended recipients. Well-known examples are 
FIELD [Rei90] and Polylith [Put94]. These systems pri- 
marily support interlanguage invocation and may also of- 
fer some, typically primitive, assistance with interlanguage 
naming. They seldom, however, provide much support for 
the remaining dimensions of language information and type 
compatibility. Approaches in this category are usually far 
from seamless, since software modules must be created or 
modified to adhere to the messaging interfaces supported 
by these systems. Significant overhead can be incurred if 
software modules must continually translate data from their 
native type systems into messages and back again. 

CORBA-style approaches: While the preceding classes of 
approaches focus on interlanguage invocation, CORBA-style 
approaches have emphasized the type compatibility dimen- 
sion. They require all interoperating software modules to 
adhere to a single type model, separate from that  of the 
modules' languages. This approach is typified by CORBA 
[C1PCC+93] and ILU [JSS95]. Software modules are con- 
sidered to be of two kinds: objects, which provide public 
interfaces, and clients, which invoke the methods of objects. 
These objects may be written in numerous languages, but 
a wrapper must be created for each object before it can be 
accessed by clients. Wrappers defined in an interface lan- 
guage (e.g., CORBA's IDL or ILU's ISL) provide a language- 
independent interface to the object. This interface can then 
be translated automatically into a client's language, allow- 
ing the client to interoperate with the wrapped objects. 

In addition to addressing type compatibility, object wrap- 
pers generally encapsulate interlanguage invocation, inter- 
language naming, and object implementation language in- 
formation. Thus, these approaches offer some support for all 
dimensions of polylingual interoperability. They fall short 
with respect to seamlessness, however, because clients use 
their language's type system for accessing local data and 
another (the interface language) for accessing objects. This 
shortcoming will be discussed further in Section 3.2. 
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Database approaches: Some databases provide applica- 
tion programming interfaces (APIs) or query language bind- 
ings for multiple languages, thereby allowing programs writ- 
ten in different languages to share da ta  by accessing a com- 
mon database. The database approach, however, is an an- 
cestor of the CORBA-style  approaches and hence suffers 
from the same lack of seamlessness. In particular,  shared 
objects must be created within the database 's  type model, 
usually different from a given language's type model, and 
the database 's  query language must be used when access- 
ing those objects. Object-oriented databases,  such as the 
T I / A r p a  Open OODB [WBT92], allow accessors to create 
and access objects using their own language's type model, 
but  typically no facilities are provided for interoperability. 
That  is, da t a  stored in the database via one API  cannot be 
accessed via another. 

Compound documents: Microsoft's OLE [Bro94] and Ap- 
ple's OpenDoc [App94] support  interoperabili ty by allow- 
ing objects, called compound documents, to contain or refer 
(point) to other objects. For example, a Microsoft Word 
document can contain a reference to an Excel spreadsheet 
object, and when the object  is accessed, the operations in- 
voked on it are automatical ly routed to Excel. As with 
the previous approaches, software modules must be specif- 
ically writ ten or modified to make use of compound docu- 
ments: e.g., making calls to a compound document man- 
ager. Hence, while they may provide or encapsulate all the 
subcomponents in our model, these approaches also fall far 
short of seamlessness. 

Languages and language extensions: The subject-oriented 
programming paradigm [HO93] permits  objects to be ac- 
cessed via more than one public interface. Each accessor 
can potential ly use a different interface to access the same 
object. Subject-oriented programming has been limited to 
a single language, so it is not currently an approach to in- 
teroperability; however, a natural  extension is for an object 
to be accessible from different languages via different inter- 
faces. In this sense, our approach to polylingual systems 
may be thought of as a generalization of subject-oriented 
programming, since (as shall be described in Section 4) each 
language has its own interface to an object, with the selec- 
tion of interface handled automatical ly when the object is 
accessed. 

Concert [AR94] is a system that  uses an extended C lan- 
guage, called Concert /C,  to support  interoperability. Like 
the CORBA-style  approaches, Concert uses an intermediate 
interface language; but  unlike CORBA and ILU, Concert 's 
interfaces are automatical ly generated. So Concert elimi- 
nates the need for a human-created wrapper, at the cost of 
extending the programming language - a cost not incurred 
by our approach. Although Concert supports  only C and 
C++, a successor to Concert, called Mockingbird [Aue96], 
is intended to provide interoperabili ty between C++, Java, 
CORBA IDL, and other languages. 

3.2 Example Application of a CORBA-style Approach 

We now describe an application of a representative approach 
to a specific interoperabil i ty problem in the Frank Lloyd 
example. Specifically, we illustrate the use of a part icular 
CORBA-style  approach, namely the Inter-Language Unifi- 
cation (ILU) system, an interoperabili ty mechanism devel- 
oped at Xerox PARC [JS94]. 

3.2.1 An Example Scenario in Frank Lloyd 

As noted earlier, a potential  interoperabil i ty problem for the 
new Frank Lloyd company might involve an application that  
assigns office space based on information contained in per- 
sonnel data. The new company would like to make use of a 
CLOS application developed by Lloyd Ltd. Figure 2 shows a 
simple CLOS function in which personnel with higher office 
rankings receive priority for office assignments. 

(defun office-rank (employee) 
;;; rank = years-of-service * salary / 10000 
( / (*  (YearsOfService employee)  

(Salary employee) 
) 
10000 

) 

Figure 2: Pr imary  Function Used in CLOS Applicat ion 

Recall that  personnel da ta  for employees from the Frank 
Firm are maintained in C++, while Lloyd Ltd. employee per- 
sonnel da ta  are maintained in CLOS. The new company 
would like to make use of the CLOS applicat ion without 
having to translate the C++-maintained personnel informa- 
tion and with only minimal changes to the original CLOS 
application. 

3.2.2 An Overview of ILU 

One approach tha t  the Frank Lloyd company might use to 
solve this problem is provided by ILU. ILU can be viewed as 
an approach to creating client-server architectures, in which 
language-specific servers manage instances of classes, and 
clients access and manipulate  objects by invoking requests 
on these servers. Wi th  respect to the Frank Lloyd example, 
a CLOS server would manage CLOS-defined employee da ta  
for Lloyd Ltd. and a C++ server would manage similarly 
defined da ta  for Frank Fi rm employees. The CLOS office 
ranking application would be an example of a client in ILU. 

In ILU, interoperating classes are specified using an in- 
terface description language called ISL (Interface Specifica- 
tion Language). Classes are described by declaring a class 
identifier and associating a set of operations with the class. 
Figure 3 shows the ISL for an Employee class based on our 
example scenario. 

INTERFACE Employee; 

Type ClassInterface = OBJECT 
METHODS 

Salary 0 : INTEGER; 
YearsofService 0 : INTEGER; 

END; 

Figure 3: ISL for Employee Class 

Given the ISL for a class, creating an ILU-based polylin- 
gual application requires tha t  the following steps be per- 
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formed: 

1. Create class interfaces for clients. This is accomplished 
by applying language-specific translators (provided by 
the ILU development environment) to the ISL class 
description. For example, an ISL-to-CLOS translator 
creates a CLOS class interface for employees, while an 
ISL-to-C++ translator similarly creates a C++ class in- 
terface. The ILU translators also produce additional 
server and client code that is simply compiled and 
linked into a client and server, respectively, but can 
otherwise be ignored by the developer. This code serves 
the purpose of the Language Arbiter and Communica- 
tor defined in our model. 

2. Construct the servers: 

(a) A separate class, which is a subclass of the class 
generated in step 1, must be supplied by the pro- 
grammer. This class contains the actual imple- 
mentations of the various member functions, as 
well as any required data members (which are 
part of the implementation, not defined as part 
of the class). Thus, the server class is used by the 
servers, while the client class is used by clients. 

(b) A server program must be implemented. The 
server program essentially creates instances of the 
class implementation, publishes names for them 
in a globally available, shared area, and then waits 
for requests. 

3. Construct the clients. Clients access objects by issuing 
requests in the form of names (or identifiers) to servers. 
With respect to our scenario, the CLOS office ranking 
application corresponds to an ILU client. A client in- 
teracts with a server through the interface generated in 
step 1. Thus, the client views an instance as if it were 
implemented in its own language, even though it may 
turn out to be implemented in a different language. 

4. Invoke the servers and the clients. With respect to the 
example scenario, each server would manage instances 
of personnel data, and the client, i.e., the office rank- 
ing application, would access the instances via these 
servers. 

3.2.3 An Assessment of ILU 

ILU provides support for each of the dimensions in our in- 
teroperability model. As mentioned above, a name service, 
albeit a simple one, allows applications to locate objects. In 
addition, the ILU ISL translators generate the required lan- 
guage arbiters and communicators. As noted in Section 3.1, 
CORBA-style approaches emphasize the type compatibility 
dimension. ILU imposes a language-external type model on 
application developers, who must use ISL to describe types 
instead of using the native (CLOS, C++, etc.) type model. 
This approach is best suited for the easiest case, and perhaps 
the common case, interoperability scenario. For example, if 
it is known a pr ior i  that  two (or more) modules may need 
to interoperate, then an application can of course start with 
an ISL description of the interoperating classes. More prob- 
lematic is the megaprogramming scenario, as in the Frank 
Lloyd example. Using ILU in this case would require the 
application developer to "wrap" the existing classes with 
ISL descriptions. In addition, the existing application would 
need to be modified to use the interface produced by the ISL 
translators. 

In summary, a significant problem with CORBA-style 
approaches, such as ILU, is that  software modules cannot 
create and access shared objects by using their own type 
systems. They must use an external, common type model, 
which may offer only a subset of the capabilities of the native 
language's type model, so some types cannot be expressed. 
A related problem is that  the common type model is not 
transparent to the software modules; thus, legacy systems 
must be modified or retrofitted to use the interface language, 
and programmers must learn and reason about a separate 
type model. As we demonstrate in the forthcoming sections, 
a major feature of our approach is that  no common type 
model is imposed on application developers, and therefore 
no interface language need be used by developers. Each 
software module can access shared objects via its language's 
native type system. 

4 PolySPIN and PolySPINner 

As indicated in Section 3.1, existing approaches to interop- 
erability are generally not seamless. Because they typically 
involve use of a different invocation mechanism (e.g., low- 
level approaches and messaging systems) or a different type 
model (e.g., CORBA-style and database approaches) from 
those of the programming languages in which accessors are 
implemented, it is difficult to imagine how these approaches 
could be made transparent, even through automation. Our 
approach, on the other hand, imposes neither different in- 
vocation mechanisms nor different type models and hence 
supports transparent, seamless interoperability. In this sec- 
tion we outline our approach and describe the toolset that 
automates its use. 

4.1 PolySPIN 

PolySPIN is an approach to Support for Persistence, Inter- 
operability and Naming in POLYlingual systems [KW96]. 
The key component of PolySPIN is a language-neutral name 
management mechanism that allows for uniform name-based 
access to objects [Kap96]. This mechanism supports, but  
does not require, a uniform model of orthogonal persistence 
(see [WWFT88] for an overview) and/or  transparent polylin- 
gual interoperability. 

The interoperability aspects of PolySPIN supplement the 
name management component (locator) with communica- 
tor, type matcher and language arbiter functionality, all of 
which are transparent to accessors. Language information 
(language arbiter) is associated with objects as part  of the 
name-object binding. The interlanguage invocation (com- 
municator) functionality is achieved by automatically mod- 
ifying the implementation of object methods. The modified 
methods consult the language arbiter at each invocation and 
transparently select between making a local method call or 
an automatically generated interlanguage call. Since this 
communicator mechanism is encapsulated within the origi- 
nal interfaces defined for the object-related procedures and 
functions, it is entirely transparent to accessors. Similarly, 
the type matcher functionality is achieved via automated 
type compatibility checking whose results influence the mod- 
ifications made to object method implementations. This 
type matching is transparent to accessors since it does not 
depend upon explicit use of any non-native type models and 
does not cause any type definitions or interfaces to be mod- 
ified. 
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4.2 PolySPINner 

PolySPINner is a toolset automating the application of the 
PolySPIN technique. Currently, our prototype supports in- 
teroperabil i ty between C++ and CLOS programs. PolySPIN- 
ner is extensible because it consists of generic components 
that  can be instant iated for different languages. This section 
discusses the PolySPINner tool, including its architecture, 
foundations, and implementation. 

PolySPINner operates in the following manner. Given 
a set of accessors and objects implemented in programming 
languages 11,12,..., lm, the user supplies PolySPINner with 
the type definitions (both interface and implementation) of 
the objects. PolySPINner modifies the implementation of 
each type ( that  is, the method implementations) so that  
its methods become callable from all languages l l , . . . , lm.  
This instrumentat ion provides all the interoperabili ty sup- 
port  functionality specified in our model (Figure 1). 

In order for PolySPINner to accomplish this, some as- 
sumptions axe necessary. The pr imary assumption is that  
for each object  type t l  wri t ten in language 11 (without loss 
of generality), the user must  also supply corresponding ob- 
ject  types t2, t3, . . . , t in created in languages 12,13,...,lm, 
that  "match" t l .  (Matching is discussed further below.) Af- 
ter PolySPINner has done its work, any call to a method of 
t l  tha t  comes from a program in language li, i > 2, is trans- 
parently converted into a corresponding call to a method of 
type t~. Since none of the type interfaces are modified, appli- 
cation programs (accessors) tha t  previously used these types 
need no modification in order to interoperate via these types. 
Thus, for example, even though the Frank Firm and Lloyd 
Ltd. implemented their respective concepts of "employee" in 
different languages and with different method calls to access 
the person's name, age, occupation, and so on, PolySPINner 
in theory can allow an application developed by the Frank 
Firm for processing its personnel information to be applied 
to the merged database of Frank Lloyd with no visible mod- 
ifications to the objects and no modifications at all to the 
application. 6 

4.2.1 PolySPINner Architecture 

The architecture of PolySPINner is presented in Figure 4. 
Each set of type definitions is fed through a Parser compo- 
nent to convert it into a language-independent intermedi- 
ate representation. In this form, types are matched via a 
Matcher component so tha t  calls to a method in one lan- 
guage are converted into calls to another method in a dif- 
ferent language. Finally, the type definitions, matcher out- 
put,  and other information are fed to a Generator that  cre- 
ates types that  are accessible from various languages. These 
types have interfaces that  are identical to the originals. 

PolySPINner is extensible because we have implemented 
generic Parser, Matcher, and Generator components. By 
instantiat ing these components with part icular parsing re- 
quirements, match criteria, or generation information, a de- 
veloper can tailor PolySPINner for a given set of languages 
without affecting PolySPINner 's  overall behavior. 

The Parser PolySPINner 's  generic Parser component is 
responsible for managing the parsing of type definitions into 
PolySPINner 's  language-independent intermediate represen- 
tation. In its current form, this intermediate representation 

6As noted in section 2.3, full discussion of database merging issues, 
such as semantic heterogeneity [SL90], is beyond the scope of this 
paper. 

Multi-language Types 
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I Matcher ~ - ~  m:t~h~ ) 

I match specification 

I Generator 

L ............................. ~. ........................................................... 

~ Polylingual Types 

Figure 4: The PolySPINner Architecture 

is fairly straightforward, consisting of abstract  da ta  types 
for object types, methods,  and parameters.  We intend to 
adopt a more powerful intermediate representat ion in the 
near future and are currently examining alternatives in the 
literature. The PolySPINner prototype  incorporates mini- 
mal, proof-of-concept parsers for C++ and CLOS. 

The Matcher PolySPINner 's  generic Matcher component 
is responsible for matching "equivalent" types from differ- 
ent languages. Wha t  does it mean for two types in different 
languages to be equivalent? A strict interpretat ion could 
require them to have the same name, abst ract  specification, 
and binary representation. Such strictness is unrealistic, 
however, since interoperabil i ty is often desired between soft- 
ware modules whose types are nearly but  not exactly equiv- 
alent. More lenient, or relaxed, matching criteria, are more 
realistic and useful. Zaxemski and Wing [ZW93] have con- 
s tructed a taxonomy of relaxed type matching criteria within 
the language ML. Using polylingual system concepts, we 
have created a prototype extension of their taxonomy tha t  
models matching across languages, and PolySPINner cur- 
rently supports  these (and other) matching criteria. In par- 
ticular, we provide a l ibrary of instantiat ions for the generic 
Matcher corresponding to common type matching criteria: 
exact match, Zaremski /Wing matching, intersection match 
(ignore any methods tha t  the types do not have in common), 
and others. Since compatibi l i ty criteria are represented as 
C++ functionsl users can also create their own using the full 
power of C++. We provide a l ibrary of functions to sim- 
plify the process of building these functions, such as generic 
i terators over all methods of an object type. 

The Generator PolySPINner 's  generic Generator  compo- 
nent is responsible for t ransparent ly  modifying the imple- 
mentations of types so that  they are accessible from multi- 
ple languages, without modifying the interfaces of the types. 
Because we are working only with object-oriented languages, 
in which the interface and implementat ion of a type (class) 
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are separate, we can conveniently modify the implementa- 
tion and leave the interface unchanged. Thus, to support  
access from multiple languages, a method 's  body is modi- 
fied to query the language arbiter  and select the appropri- 
ate communicator code. r Examples of such modifications as 
they are performed by our current PolySPINner prototype 
appear in Section 5. 

5 Applying PolySPlNner 

As illustrated in Section 3, existing approaches support-  
ing the development and maintenance of polylingual appli- 
cations require some elaborate mechanisms. In contrast, 
PolySPIN shields the developer of polylingual applications 
from such complexities. As a point of comparison, we illus- 
t ra te  the use of the PolySPINer prototype by applying it to 
the example scenario outlined in Section 3.2. 

Recall tha t  in this scenario, the new company, Frank 
Lloyd, wishes to use an application for assigning office rank- 
ings (written in CLOS) on employee da ta  objects (main- 
tained in both CLOS and C++). To accomplish this, a soft- 
ware engineer would apply PolySPINner to each of the orig- 
inal class definitions for the personnel data. Figure 5 shows 
portions the original CLOS and C++ Employee classes. Note 
that  the method interfaces are slightly different for each of 
the classes. In addition, each of the classes is a subclass 
of NameableObject ,  a class defined by PolySPIN, which al- 
lows objects to part icipate in its unified name management 
mechanism. 

' C+ Employee Class Interface ;;; CLOS Employee class 
lass Employee : public NameableObject { (defclass Employee (NameableObject) 
ublic: ((ssn :accessor ssn 
int Salary 0; :type Integer) 
int YearsOIService O; (salary :accessor salary 
Date Birthday O; :type Integer) 
int Age(); (years :aceessoryears 

private: :type Integer) 
int monthlySalary; ) 
Date dateStarted; ) 
Date dateOfBirlh: 

}; ;;; CLOS Employee class methods 
II C+ Employee Class Implementation (defmethod Salary ((this Employee)) 
int Employee::Salary 0 { (declare (return-values Integer)) 
mmm (monthlySalary * 12); (salary this) 

} ) 
int Employee::YearsOfServiee 0 { 

int numberOfDays; (defmethod YearsOfService ((this Employee)) 
numberOt:Days = Today 0 - dateStarted; (declare (return-values Integer)) 
mmm (numberOfDays / 365); (years this) 

} ) 
Date Employee::Birthday 0 { 

remm (dateOfBirth); (defmethod FormatSSN ((this Employee)) 
} (declare (return-values String)) 
int Employee:: Age 0 { (formatter (ssn this) :ssn) 

int numberOfDays; ) 
numberOfDays = Today 0 - dateOfBi~h; 
return (numberOfDays / 365); 

} 

Figure 5: Original C+÷ and CLOS Employee Classes 

Next the tool determines whether the classes are "com- 
patible" with one another. Compatibi l i ty is specified by the 
user of the tool, as discussed in Section 4. A plausible com- 
patibi l i ty specification for this example scenario might be 
based on an in tersec t ion  match  criterion. Under this crite- 
rion, two classes are said to be compatible if there exists at 
least one method from each class such that  the method sig- 
natures are identical. Specifically, using the classes shown 
in Figure 5, PolySPINner would deem the C++ and CLOS 

7 I n  t h e  c u r r e n t  P o l y S P I N n e r  p r o t o t y p e ,  t h e  c o m m u n i c a t o r  c o d e  
c o n s i s t s  o f  f o r e i g n  f u n c t i o n  c a l l s  f o r  C + +  a n d  C L O S ,  b u t  o n e  c o u l d  
a l s o  u s e  m e s s a g e  p a s s i n g ,  C O I ~ B A  r e q u e s t s ,  s p e c i a l - p u r p o s e  s o f t w a r e ,  
e t c .  

Employee classes to be compatible since the following meth- 
ods form an intersection match: 

C++ M e t h o d  
int YearsOfService 0 
int Salary() 

C L O S  M e t h o d  
YearsOfService((this Employee)) 
Salary((this Employee)) 

As described in Section 4.2.1, PolySPINner then mod- 
ifies the implementation for each of the matching meth- 
ods and generates the necessary communication code en- 
abling the appropriate  inter-language references. PolySPIN- 
net currently produces code based on constructs provided by 
PolySPIN [KW96] and the foreign function interface mech- 
anisms of C++ and CLOS. The specifics of these constructs 
are beyond the scope of the paper (for details see [KW96]). 
Figure 6 presents example output ,  in pseudocode, produced 
for the Salary methods. (Similar code would be generated 
for the YearsOfService methods.) When  the Salary method 
is invoked on an object, the method first checks the defining 
language of the object. For example, in the CLOS version, if 
the object is implemented in CLOS, then the original CLOS 
logic is executed; otherwise, a foreign function call is made 
to the corresponding C++ version of the Salary method. 

int Employee :: Salary 0 { 
switch (this->language) { 

case CPLUSPLUS: 
I/original code 
return (monthlySalary * 12); 
break; 

case CLOS: 
//call CLOS method 
int tempSalary = 

ForeignFunctionCallToCLOS (this); 
return (tempSalary); 
break; 

case... 
} 

(defmethod Salary ( ( this Employee ) ) 
(declare (return-values Integer )) 
(cond ( (EQUAL (language this) CLOS) 

;;;;; original code 
(salary this) 

(EQUAL Oanguage this) CPLUSPLUS) 
;;;;; call C++ method 
(foreign- function-call-to-cpp this) 

) 
) 
) 

Figure 6: Modified Implementat ion of Salary Methods 

Finally, the generated code (i.e., the modified method 
implementations) must be compiled and linked with the ex- 
isting office ranking application. Note tha t  no modifications 
to the CLOS application or the class interfaces are required 
by the PolySPINner approach. Only the method implemen- 
tations are changed. 

5.1 A Comparison with ILU 

Both PolySPIN and ILU provide support  for each of the 
dimensions in our model. PolySPIN's  name management 
mechanism provides a much richer naming service than does 
ILU's. More importantly,  PolySPIN, unlike ILU, does not 
impose a language-external type model on application devel- 
opers. Instead of ISL, PolySPIN permits  developers to use 
their native (CLOS, C++, etc.) type models and hence to 
define types of shared objects in a style tha t  they find famil- 
iar, natural  and intuitive. As a result, PolySPIN is bet ter  
suited than ILU for use in megaprogramming,  although it 
is also very appropriate  for the easiest and common cases 
of interoperability. Finally, CORBA-style  approaches, such 
as ILU, require exact type compatibi l i ty  between accessor 
and object, but  PolySPIN allows relaxed matches, which 
axe more realistic, part icularly for megaprogramming. 
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6 Conclusions 

Existing approaches to interoperability are not sufficiently 
seamless. If software modules are required to use invo- 
cation mechanisms or type models that are different from 
those provided in their programming languages, this im- 
poses an unacceptable barrier to integration, particularly in 
the megaprogramming case. An interoperability approach 
that forces software developers to modify such fundamental 
aspects of software modules, that admits only exact match 
type compatibility, or that is effective only for easiest-case or 
common-case interoperability is unsatisfactory for meeting 
the challenges of polylingual interoperability. 

In this paper, we have described the PolySPIN approach 
and PolySPINner toolkit for automating seamless interoper- 
ability in polylingual systems. Since this approach evolved 
from work on name management in persistent object sys- 
tems, our prototype toolset relies upon features of the Open 
Object-Oriented Database (Open OODB) [WBT92] and ex- 
ploits inheritance of name management-associated capabil- 
ities in implementing seamless interoperability. The ap- 
proach, however, does not depend on Open OODB, per- 
sistence in general, nor inheritance, so we plan to explore 
alternative implementation strategies that will broaden the 
applicability of our toolset. 

Now that we have created a generic framework for exper- 
imenting with polylingual systems, we have several other fu- 
ture directions in mind for PolySPINner. Rather than hav- 
ing the user supply matching type definitions in several lan- 
guages, we would like PolySPINner to automate this process, 
generating corresponding definitions to as great an extent as 
possible. We also plan to support additional languages, with 
Ada95 and Java being prime candidates. As the number of 
supported languages increases, we expect interesting type 
compatibility issues to arise. Finally, we envision further 
tools to assist the construction of polylingual systems, such 
as a polylingual debugger, static analyzer, and structured 
editor. 
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