
A Framework for Event-Based Software
Integration

DANIEL J. BARRETT, LORI A. CLARKE, PERI L. TARR, and ALEXANDER
E. WISE
University of Massachusetts

Although event-based software integration is one of the most prevalent approaches to loose
integration, no consistent model for describing it exists. As a result, there is no uniform way to
discuss event-based integration, compare approaches and implementations, specify new event-
based approaches, or match user requirements with the capabilities of event-based integration
systems. We attempt to address these shortcomings by specifying a generic framework for
event-based integration, the EBI framework, that provides a flexible, object-oriented model for
discussing and comparing event-based integration approaches. The EBI framework can model
dynamic and static specification, composition, and decomposition and can be instantiated to
describe the features of most common event-based integration approaches. We demonstrate
how to use the framework as a reference model by comparing and contrasting three well-
known integration systems: FIELD, Polylith, and CORBA.

Categories and Subject Descriptors: D.2 [Software]: Software Engineering

General Terms: Performance, Theory

Additional Key Words and Phrases: Control integration, CORBA, event-based systems,
FIELD, interoperability, Polylith, reference model, software integration

1. INTRODUCTION

A serious concern in the construction of large software systems is integra-
tion: the process by which multiple software modules (programs, subpro-
grams, collections of subprograms, etc.) are made to cooperate. Approaches
to integration range from loose, in which modules have little or no knowl-
edge of one another, to tight, in which modules require much knowledge
about one another. Loose integration helps reduce the impact on a system
when modules are added or changed. Event-based integration, in which
modules interact by announcing and responding to occurrences called

This work was supported in part by the Air Force Materiel Command, Rome Laboratory, and
the Advanced Research Projects Agency under contract F30602-94-C-0137.
Authors’ address: Computer Science Department, University of Massachusetts, LGRC 243,
Box 34610, Amherst, MA 01003-4610; email: {barrett; clarke; tarr; wise}@cs.umass.edu.
Permission to make digital /hard copy of part or all of this work for personal or classroom use
is granted without fee provided that the copies are not made or distributed for profit or
commercial advantage, the copyright notice, the title of the publication, and its date appear,
and notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior specific permission
and / or a fee.
© 1996 ACM 1049-331X/96/1000–0378 $03.50

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 4, October 1996, Pages 378–421.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F235321.235324&domain=pdf&date_stamp=1996-10-01

events, is perhaps the most prevalent loose integration approach—more
than 50 event-based integration systems are available today (e.g., Digital
Equipment et al. [1993], Gerety [1990], SunSoft [1993], Patrick [1993],
Purtilo [1994], and Reiss [1990]).
Unfortunately, no precise, consistent model exists for describing event-

based integration; in fact, there is not even a consistent vocabulary for
discussing it. For example, a set of interacting software modules might be
called programs, modules, tools, applications, processes, process groups,
clients, objects, information objects, components, tasks, senders/recipients,
agents, actors, or function hosts. These software modules may interact via
events, messages, announcements, notices, performatives, data, solution
information, or requests; and these may be routed by a message server,
broadcast server, broadcast message server, server process, manager pro-
cess, event manager, object request broker, distributor, or Software Bus.1

Often there are subtle semantic differences between the concepts that these
terms represent, but the differences and similarities are hard to discern.
Since there is no consistent model for describing event-based integration,

it is hard to capture one’s integration requirements and match them with
those offered by various event-based approaches. Thus, it is difficult to
choose a suitable approach; and if no existing approach is suitable, it is
difficult to specify a new one. It is also difficult to identify the similarities
and differences of various event-based approaches in order to support
interoperability among them.
In this article, we attempt to address these shortcomings by specifying a

generic framework for event-based integration, the EBI framework. This
framework is not “yet another” loose integration system; rather, it is a
high-level, general, and flexible reference model with several purposes:

—to identify common components found at the heart of event-based soft-
ware integration and to define a precise and consistent vocabulary for
discussing them,

—to serve as a basis for comparison of specific event-based integration
mechanisms and, as a consequence, to facilitate interoperability among
them,

—to provide insight into what is required for high-level communication
between software modules.

1.1 Scope of the Framework

The EBI framework models event-based integration, as found in FIELD
[Reiss 1990], SoftBench [Gerety 1990], Polylith [Purtilo 1994], ISIS [Bir-
man 1993], AppleEvents [Apple Computer 1991], Yeast [Krishnamurthy
and Barghouti 1993], and many other integration systems. We have chosen
to concentrate on event-based integration in order to direct attention to this
emerging technology and to provide a more focused model. Other related
techniques, such as procedure call, shared repository (e.g., ECMA’s PCTE

1Software Bus is a registered trademark of Eureka Software Factory.

Event-Based Software Integration • 379

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 4, October 1996.

[Boudier et al. 1989], EAST [Gautier et al. 1995]), streams (e.g., pipes), and
compound documents (e.g., OLE [Brockschmidt 1995], OpenDoc [MacBride
and Susser 1996]), were omitted because they did not fit the focus of our
event-based model. Procedure calls (and likewise, object-oriented method
invocations) require agreement between caller and callee that is unneces-
sary for the announcement of events. Shared repository or central database
approaches allow data to remain in storage and to be accessed multiple
times, whereas events are transitory. Stream-based approaches require a
continuous flow of data rather than units of data. Finally, compound
document approaches emphasize integration between passive data objects
rather than active software modules.
Some other issues of distributed systems, such as reliability and concur-

rency, are not modeled by the EBI framework. While these issues must be
addressed when implementing an event-based integration mechanism, they
are not strictly part of the event-based model. Existing research on the
comparison of concurrency control models [Chrysanthis and Ramamritham
1990] and of reliability models [Siewiorek and Swarz 1992] can be used to
supplement the results provided by the EBI framework.

1.2 Roadmap

We begin in Section 2 by describing related work in event-based software
integration. Section 3 gives a brief overview of the EBI framework. Section
4 defines a descriptive type model utilized in the detailed description of the
framework, which follows in Section 5. Section 6 demonstrates the EBI
framework’s effectiveness by describing and comparing three existing inte-
gration systems: FIELD [Reiss 1990], Polylith [Purtilo 1994], and CORBA
[Digital Equipment et al. 1993]. Finally, two appendices describe the type
model and the FIELD case study in detail.

2. RELATED WORK

The concepts underlying event-based integration are found in diverse areas
of computer science. Event-based programming is at the heart of countless
software applications that wait for user-generated events (e.g., key presses,
mouse clicks) and respond to them. Dozens of software integration systems,
such as FIELD [Reiss 1990], use event-based models in which multiple
software modules react to events announced by other modules. Similar
concepts have a long history in the AI community, such as actors [Hewitt
and Inman 1991] and blackboard systems [Jagannathan et al. 1989]. Some
rule-based systems, such as those found in certain process-centered envi-
ronments (e.g., Darwin [Minsky and Rozenshtein 1990], Marvel/Oz [Ben-
Shaul and Kaiser 1995], Oikos [Montangero and Ambriola 1994], and Adele
[Belkhatir et al. 1994]), are based in part on event-based substrates, in that
updates to data may trigger particular actions; such systems generally
have a broader focus than software integration, encompassing configura-
tion management, software process, and other domains. Several operating

380 • Daniel J. Barrett et al.

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 4, October 1996.

systems even have event announcement primitives built in to facilitate
application integration (e.g., Commodore-Amiga [1992]).
There have been several attempts to formulate a general model of

event-based integration. Wasserman [1990] defined control integration as
the ability of software “tools” (modules) to “notify one another of events. . .
as well as the ability to activate the tools under program control.” Thomas
and Nejmeh [1992] extended Wasserman’s work and identified two basic
control integration properties: provision of invokable operations (“services”)
by tools and use of those operations by other tools. Arnold and Mémmi
[1992] defined an informal reference model to help compare and contrast
control integration approaches. Garlan and Notkin [1991] used Z [Spivey
1989] to specify a formal model of implicit invocation, a subset of control
integration typified by FIELD [Reiss 1990], and compared and contrasted
several well-known systems.
The EBI framework provides a more precise model of loose control

integration than Arnold and Mémmi’s, capturing event-based functionality
within a set of abstract components (abstract data types). Garlan and
Notkin’s model is more formal than the EBI framework, but is restricted to
implicit invocation and goes into less semantic detail than does the EBI
framework.
The terms “control integration,” “event-based integration,” and “implicit

invocation” are used frequently in the literature to mean similar things. We
use the term “event-based integration” because we believe it best captures
the scope of our model. Control integration is too broad a term, since it may
refer to loose or tight integration, and the EBI framework supports only
loose integration. Implicit invocation refers only to anonymous multicast-
ing and is therefore too specific a term for the EBI framework, which
encompasses other models of messaging.
The remainder of this section surveys existing approaches to event-based

software integration. We examine these approaches across five dimensions:
methods of communication, expressiveness of module interaction descrip-
tions, intrusiveness of module interaction descriptions, static versus dy-
namic behavior, and module-naming issues.

Methods of Communication. Two primary methods of communication
among software modules are point-to-point and multicast. Point-to-point
means that data are sent directly from one software module to another.
Two common point-to-point approaches are procedure call2 and application-
to-application. A procedure call sends procedure parameters from a soft-
ware module known as the caller to another known as the callee, optionally
returning values to the caller. In the application-to-application approach,
application programs have unique IDs, and other programs send messages
to them using the IDs as addresses. This approach is common on personal
computers (e.g., Apple Computer [1991] and Zamara and Sullivan [1991]),

2Procedure call is not itself an event-based mechanism, but it is often used to transmit
messages between modules in event-based systems.

Event-Based Software Integration • 381

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 4, October 1996.

since the simplifying assumptions of “one user per machine” or “one
invocation of a given program at a time” can often be made. Application-to-
application communication is often designed so that an end-user can
specify the message passing that occurs among programs, whereas proce-
dure calls are generally specified only by software developers.
Multicast means that data are sent from one software module to a set of

other software modules. Two popular multicasting approaches are implicit
invocation and the software bus. In the implicit invocation approach,
software modules express their interest in receiving certain types of data
that are then routed, usually by a server, to the appropriate recipients.
Implicit invocation, originally called selective broadcast, was pioneered by
FIELD [Reiss 1990]. Today, implicit invocation is used in many commercial
products such as Hewlett-Packard’s SoftBench [Gerety 1990] and Sun’s
ToolTalk [SunSoft 1993]. It has also been added to some programming
languages (e.g., Notkin et al. [1993]). In the software bus approach,
software modules have their inputs and outputs bound to the channels of
an abstract bus. Data sent to a bus channel are received by all tools with an
input bound to that channel. A key feature is that bus connections can be
rearranged without modifying the tools. An example of a software bus is
Polylith [Purtilo 1994].
The EBI framework models the whole spectrum of point-to-point, multi-

cast, and broadcast communication. The distinction between these three
methods becomes moot in a dynamic model where the number of recipients
may change. Point-to-point and broadcast are modeled as special cases of
multicast to a single recipient and to all recipients, respectively.3

Expressiveness of Module Interaction Descriptions. Different approaches
to integration provide varying amounts of expressiveness in specifying
module interactions. The least expressive approaches have no explicit
specification other than what can be inferred from the modules’ source
code. An example is ARexx [Zamara and Sullivan 1991]. More commonly,
the input and output operations of each module are specified in terms of
procedure signatures, as in ToolTalk [SunSoft 1993]. These operations are
typically known as a module’s interface. SoftBench [Gerety 1990] not only
specifies module interfaces, but also provides a programming language
[Fromme 1990] for specifying the actions of modules on receipt of particular
types of messages.
Some systems support specification of not only module interfaces but also

the connections between modules. Polylith [Purtilo 1994] provides a module
interconnection language (MIL) to specify direct connections between the
inputs and outputs of module interfaces. For example, MIL can specify that
a particular output of one module’s interface is routed directly to a
particular input of another module’s interface. Polylith provides two types
of connections: unidirectional and bidirectional data transmission. In con-

3An implementation, however, may optimize point-to-point, multicast, and broadcast differ-
ently.

382 • Daniel J. Barrett et al.

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 4, October 1996.

trast, software architecture models such as Meld [Kaiser and Garlan 1987],
ACME [Allen and Garlan 1994], and Rapide [Luckham et al. 1995] add
support for the specification of many types of connections, usually called
connectors. Connectors are often first-class entities and may be user
specified. Software architecture models address a higher level of abstrac-
tion and a broader range of architectures than the EBI framework does.
Thus, the two approaches are not directly comparable. In particular,
software architecture presupposes important details that the EBI frame-
work explores. For example, ACME has been used to model a simple
“event-based” architecture [Garlan et al. 1994], but at a very high level that
does not address many features found in existing event-based systems (e.g.,
rich support for dynamism, delivery constraints, and message transforming
functions, as described in Section 5).
The EBI framework is independent of any particular module description

language and provides an abstract container, called a configuration specifi-
cation, where such descriptions are placed.

Intrusiveness of Module Interaction Descriptions. Different approaches
to integration specify module interactions with varying degrees of intru-
siveness. The most intrusive specifications are inserted into the modules
themselves. Typically, the source code of each module is modified to allow
the module to communicate with other modules, and there is no external
specification of module interactions.
A less intrusive approach is encapsulation, or wrapping. Instead of

modifying the source code of a module, an external layer of software, called
a wrapper, is created to specify a module’s behavior. SoftBench [Gerety
1990] uses wrappers. Some systems, such as ToolTalk [SunSoft 1993],
combine source code modification with wrapping, instrumenting a module’s
source code to enable it to communicate with the wrapper.
The EBI framework makes no assumptions about the intrusiveness of

interaction descriptions and therefore supports both module modification
and wrapping.

Static versus Dynamic Behavior. Different integration approaches sup-
port varying degrees of static and dynamic specification of their behavior.
There are advantages and disadvantages to each kind of specification.
Static specification is more easily checked for correctness than dynamic
specification, but it is severely limited in flexibility. In contrast, dynamic
specification allows module behavior and/or interactions to be changed
while modules are executing; however, reasoning about the behavior of
large, dynamic systems can be very difficult.
The original Polylith [Purtilo 1994] supported only static specification of

interactions, as modules had to be terminated and restarted to change their
interactions.4 The SDL BMS [Barrett 1993] supports only dynamic specifi-
cation of interactions, allowing modules to register and unregister for
service dynamically. ToolTalk [SunSoft 1992] supports both static and

4The latest specification of Polylith models dynamism (e.g., Purtilo and Hofmeister [1991]).

Event-Based Software Integration • 383

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 4, October 1996.

dynamic specification of interactions. The EBI framework models both
static and dynamic specification of behavior.

Naming Issues. In order for a module to receive messages, it must
somehow be identifiable. There is a spectrum of approaches for identifying
modules, ranging from abstract to primitive. At the “abstract” end of the
spectrum, senders are completely unaware of the names and locations of
recipients. Naming issues are typically handled by a message server that
locates each module that should receive a message. For example, FIELD
[Reiss 1990] modules do not have explicit names; instead, each software
module registers message patterns with the message server, denoting the
types of messages that the module wants to receive. Senders broadcast
their messages blindly, without knowledge of any recipients, and the
message server delivers to each module only those messages matching the
module’s message patterns.
At the next lower level of abstraction, senders still need not know the

names and locations of recipients, but they must know references to those
names, called aliases. (Aliases may themselves be names.) For example,
ISIS [Birman 1993] allows multiple modules to be grouped under an alias,
so any message sent to that alias is transparently forwarded to all mem-
bers of the group.
At the next lower level of abstraction, senders must know the exact

names of recipients. CORBA [Digital Equipment et al. 1993] requires each
software module to have a globally unique name, and each message must
contain its intended recipient’s name. CORBA uses a name server to locate
receivers that are distributed on multiple machines. ARexx [Zamara and
Sullivan 1991] modules have globally unique names, but each message does
not contain the recipient’s name; instead, the name is used once to open a
communication channel between sender and receiver.
At the “primitive” end of the spectrum, senders must know the exact

names and locations of recipients. Such approaches are rare nowadays,
since this degree of knowledge among modules increases coupling and
therefore conflicts with the benefits of loose integration.
The EBI framework can model all of these methods of naming.

3. OVERVIEW OF THE FRAMEWORK

This section presents a brief, high-level overview of the EBI framework, in
preparation for a detailed description in Section 5. We begin with a
motivating discussion of participants and framework components. After
that, we discuss how the EBI framework is used for modeling integration
approaches.

Participants and Framework Components. In the EBI framework, de-
picted in Figure 1, one or more modules, called participants, transmit
and/or receive pieces of information, called messages, in response to occur-
rences, called events. Participants that transmit messages are called in-

384 • Daniel J. Barrett et al.

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 4, October 1996.

formers, and those that receive messages are called listeners. A participant
may be both an informer and a listener.
Participant interaction is supported through four types of framework

components: registrars, routers, message transforming functions, and deliv-
ery constraints. Before a participant can transmit or receive any messages,
it must register its intent to do so via a registrar. (Unregistration and
reregistration are also modeled.) Using information from the registrar, a
router delivers messages from informers to their intended listeners.
The EBI framework allows the content and/or routing of messages to be

modified after the messages are sent but before they are received. Message
transforming functions (MTFs) defined within a router can dynamically
alter messages sent to listeners. One simple type of MTF commonly found
in integration systems is a filter, which selectively accepts or rejects
messages from a listener’s incoming message stream if they satisfy certain
criteria. Another is an aggregator, which transmits a new message when-
ever a particular sequence of incoming messages is detected.
Rules of message delivery, called delivery constraints (DCs), may also be

defined within routers. For example, a constraint can specify that all
messages must be received in exactly the order they are sent or that
messages must arrive within a certain period of time.
The EBI framework supports the description of groups. A group is a set of

participants and/or framework components that may be logically treated as
a unit. Groups permit the EBI framework to model composition and
decomposition. For example, a group containing a registrar, router, and set
of participants could itself register as a participant. Groups can also be
used to support aliases, allowing multiple modules to be accessed together
using a single name. Modules can be added to, removed from, or replaced in
a group without changing the group name, further facilitating loose inte-
gration.
In summary, registrars, routers, message transforming functions, and

delivery constraints are the components of the EBI framework in which
participants communicate. Each represents a basic aspect of integration.
Participants are the interacting software modules. Registration distin-
guishes modules that can interact from those that cannot. Routing trans-

Fig. 1. Relationships among informer, listener, registrar, router, message transforming
functions (MTFs), and delivery constraints (DCs).

Event-Based Software Integration • 385

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 4, October 1996.

mits data among participants. Message transforming functions modify data
en route to their destinations. Finally, delivery constraints control the
delivery of data.

Using the Framework. As a reference model, the EBI framework itself
does not specify implementation details such as particular registrars and
routers, a method for turning software modules into participants, or
particular patterns of interaction between participants. Instead, using a
three-phase description process, these details are imposed on the frame-
work to produce a descriptive model of a particular software integration
system. The descriptive phases are called instantiation, adaptation, and
configuration.
The instantiation phase is the process of describing the semantics of

framework components, including framework component types, particular
instances of components, groups of components, and policies for system
behavior (e.g., how to handle delivery constraint violations). Instantiation
is important because it allows us to discover and model high-level similar-
ities and differences between event-based integration approaches, without
getting bogged down with implementation details. We call an instantiation
of the framework an integration mechanism. The description of a mecha-
nism is called an integration mechanism specification. When it is unambig-
uous to do so, we use the simpler term mechanism in place of “integration
mechanism” in the previous definitions.
The adaptation phase is the process of describing methods for turning

software modules into participants that can interact within a mechanism.
Such methods include modifying module source code, linking with custom
libraries, or wrapping modules in another layer of software (discussed in
Section 2). Many factors influence the choice of adaptation method, such as
properties of the message types, flexibility of message delivery, and degree
of concurrency desired [Notkin et al. 1993]. The design decisions involved
in choosing an adaptation method are well studied [Notkin et al. 1993;
Sullivan and Notkin 1992] and thus not explored further in this article.
The configuration phase is the process of describing participants and

their permissible interactions. For example, one can define participant
types, participant instances, or that a given participant instance can use a
given MTF. Such a description is called a configuration specification.
It is important to note the relationship between the configuration phase

and registration. A configuration specification describes the allowable
interactions between participants. Registration defines the current subset
of allowable interactions that individual participant instances support. A
mechanism must provide a policy for handling the case where a participant
attempts to register information that violates the configuration specifica-
tion.

4. A DESCRIPTIVE TYPE MODEL

To facilitate the discussion of the EBI framework in Section 5, we use a
simple, descriptive type model. This type model allows us to reason about

386 • Daniel J. Barrett et al.

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 4, October 1996.

participants and framework components as abstract data types (ADTs). It
also provides a convenient way to represent certain relationships within
the EBI framework, as modeled by subtyping and inheritance.
Our type model is similar to those found in common, object-oriented

programming languages like C11 [Lippman 1990], Ada95 [Barnes 1995],
and Smalltalk [Goldberg 1984]. A type is simply a named set of attributes
and operations. An attribute is a named, typed value. An operation is a
named, invokable entity. Notable features include the following:

—Support for multiple inheritance. A type inherits all attributes and
operations from all of its supertypes and is behaviorally their subtype.

—Support for first-class types, that is, instances of type Type. Thus, to avoid
a cycle in the type hierarchy (i.e., having types Type and Attribute inherit
from each other), the type MetaType is introduced as the root, as in
Smalltalk [Goldberg 1984].

—Support for queries over types. Queries can be used for many purposes,
including determining the extent of a type (i.e., the set of all instances of
the type), determining which types have an attribute with a particular
name or type, or determining which instances of a type have a particular
attribute value.

Figure 2 illustrates how the EBI framework maps to our descriptive type
model. Using this type model, a router r, for example, is modeled as an
instance of type Router or one of its subtypes. A complete specification of
the type model is found in Appendix A.
This descriptive type model is primarily a notation for discourse, not an

implementation guide. Use of this type model in an implementation would
require specification of additional properties, such as an inheritance con-
flict resolution policy, a definition of type equivalence, constraints on
subtype/supertype relationships, and a query language.

Fig. 2. ADTs of the EBI framework. Arrows point from supertypes to their subtypes.

Event-Based Software Integration • 387

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 4, October 1996.

5. THE EBI FRAMEWORK

This section provides an in-depth description of the EBI framework. For
each definition, we include abbreviated information about the associated
type in the type hierarchy: its name, supertypes, and operation names (not
including inherited operations).

5.1 Participants: Informers and Listeners

Type: Participant (subtypes Informer, Listener)
Supertypes: Object
Operations: Set_Router, Get_Router, Set_Registrar, Get_Registrar

A participant is a software module that has been adapted to be compa-
tible with a particular integration mechanism. An informer (subtype In-
former) is a participant that detects events and sends messages, and a
listener (subtype Listener) is a participant that receives messages. A partic-
ipant may be both an informer and a listener (by defining a subtype that
inherits from both Informer and Listener). Typical candidates to be modeled
as participants are the clients of FIELD [Reiss 1990] and the clients and
objects of CORBA [Digital Equipment et al. 1993].

5.2 Events and Messages

Type: Message
Supertypes: Object, MetaType
Operations: Set_Parameter_Value, Get_Parameter_Value, Message_From_

Name

An event is an occurrence such as the invocation of a program, the
modification of a file, the change of a participant’s state, or the sending of a
message. Informers detect events by some means outside of the EBI
framework. Messages are the manifestations of events in the framework.
A message (type Message) is information emitted by an informer in

response to an event or events. Examples are the broadcast messages of
FIELD [Reiss 1990] and the requests of CORBA [Digital Equipment et al.
1993]. The common notion of message parameters (analogous to the formal
parameters of a subprogram) is modeled using attributes. For example, a
message with parameters x and y is modeled as an instance of a subtype of
Message with corresponding attributes x and y. The operations Set_Param-
eter_Value and Get_Parameter_Value provide a convenient shorthand for
setting and getting parameter values without using attribute-related oper-
ations directly. Note that all parameters are attributes, but the converse is
not necessarily true.
Type Message may have attributes to allow fine-grained control over the

sending and receiving of individual messages. Three useful attributes are

—Delivery_Constraint, specifying delivery constraints on this message. By
default, the value is “no constraints specified.”

388 • Daniel J. Barrett et al.

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 4, October 1996.

—Synchronization , representing whether the message can be sent synchro-
nously, asynchronously, or either. By default, the value is “either.”

—Access_Control , specifying the listeners that are permitted to receive this
message after it is sent. The value implicitly determines whether this
message is sent point-to-point or multicast. By default, the value is “all
listeners” (i.e., broadcast).

The values of these three attributes specify properties of message in-
stances, rather than message types, so an informer can choose different
delivery constraints, synchronization, and/or access control to apply to each
message that it sends. We chose “per-instance” specification over “per-type”
specification of these attributes for increased flexibility when messages are
sent, since the former specification can model the latter, but not vice-versa.
If desired, type-level specifications of delivery constraints, synchronization,
and access control can be specified upon registration or in a configuration
specification. Consistency checking may be necessary to insure that in-
stance-level attribute values do not conflict with type-level and system-
level specifications.
Another useful attribute for type Message is Event, which specifies the

event that caused a message to be sent. This attribute can be used to bridge
the gap between events and messages, giving listeners knowledge of events
that have occurred.

5.3 Registrars

Type: Registrar
Supertypes: Object
Operations: Register_Informer, Register_Listener_Polling, Register_Listener_

Active, Register_MTF, Register_Delivery_Constraint, UnRegister

Before a participant can send or receive any messages, its intent to do so
must be registered with a registrar. Information about a participant can be
registered by that participant or by another entity, such as another
participant or a software developer.5 Both static registration (prior to
participant invocation) and dynamic registration (during participant execu-
tion) can be modeled.
Informers must register their intent to send messages, and listeners

must register their intent to receive messages. All participants can register
message transforming functions and delivery constraints that operate on
individual messages they send or receive. For example, a listener inter-
ested only in messages from a particular informer or pertaining to a
particular event can register an MTF that filters out all incoming messages
not matching those criteria. In addition, informers can register specialized
delivery constraint, synchronization, and access control information for

5For simplicity, in the remainder of the article we say “The participant registers. . .” to mean
that either the participant performs the registration itself, or another entity performs the
registration for that participant.

Event-Based Software Integration • 389

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 4, October 1996.

each type of message they intend to send, providing the “per-type” control
mentioned in Section 5.2.
When a participant registers, it is returned a handle to an instance of

type Router. The participant calls that router’s Send and/or Receive6

operations to communicate with other participants. The router can be a
physical router or a logical router (e.g., a group of routers), and a registrar
can cause a participant’s router to be replaced by another router (e.g., for
optimization purposes) via the participant’s Set_Router operation.
When a participant registers, consistency checking may be necessary to

insure that the participant’s request does not conflict with any other
registrations. For example, if two different listeners both register a deliv-
ery constraint to “receive messages of type t before any other listener
receives them,” the registrations cannot both be satisfied simultaneously.

5.4 Routers

Type: Router
Supertypes: Object
Operations: Send, Receive, Message_Waiting

A router’s purpose is to receive messages from informers and deliver
messages to listeners. As software modules register as informers and/or
listeners, the registrar instructs the router to create communication chan-
nels between those informers and listeners. A communication channel may
be as simple as a direct connection between an informer and a listener, or it
may involve the dynamic evaluation of message transforming functions,
delivery constraints, or other routing algorithms to determine the recipient
of a message.
As a router receives messages to deliver, it maintains a partially ordered

set (poset) of undelivered messages and their intended listeners and
delivers them in an order consistent with the partial order. The complete
path of a message in an integration mechanism is as follows. Let L be the
set of all listeners, M be the set of all messages, and POSET(X) be the set of
posets of elements of set X.

(1) An informer sends a message m [M.
(2) The message m is received by a router.
(3) The router applies all applicable message transforming functions and

delivery constraints to message m, resulting in a partially ordered set
5 {(m1, l1), (m2, l2), . . . , (mk, lk)} # POSET (M 3 L), with m1, m2, . . . ,

mk [M and l1, l2, . . . , lk [L. Note that m is not necessarily in {m1,
m2, . . . , mk}.

is ordered because the evaluation of MTFs and delivery constraints
may impose an order on the delivery of messages. is a partial order
because there may be many acceptable orderings that satisfy the MTFs

6Except in the case of active message delivery, described in Section 5.4, in which no Receive
operation is needed.

390 • Daniel J. Barrett et al.

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 4, October 1996.

and delivery constraints. By leaving the order as partial, rather than
having the router select one of the possible total orderings, we support
parallelism in the router, since incomparable elements of can be deliv-
ered in parallel.

(4) The router combines partial order with its existing partial order of
undelivered messages. Each message mi is delivered to listener li in an
order compatible with the resulting poset.

Routers support two models of message delivery: polling and active. In
the polling model, a listener invokes a router’s Receive operation to receive
a message. In the active model, a listener registers a custom “receive”
operation, and whenever a message is ready to be delivered to the listener,
the listener’s router automatically invokes that operation. Each listener
chooses one or both of these delivery models at registration time. We chose
to support both models of message delivery at the framework level, rather
than leave it as an implementation issue, because of the impact at the type
model level: only the polling model needs a router Receive operation, and
the signatures of the two corresponding Registrar operations are different.
In many integration systems, the functionality of the registrar and router

is incorporated into a single component: the ORB of CORBA [Digital
Equipment et al. 1993] and the broadcast message server of FIELD [Reiss
1990] are two examples. In the EBI framework, however, registrars and
routers have sufficiently different semantics to justify their separation.
Registration is the act of obtaining permission to communicate. A registrar
can check whether the requested kind of communication violates some
constraint. Routing is the act of carrying out communication. A router can
check whether a particular message transmission violates some constraint.
Routers handle messages, but registrars do not. In addition, routers are
time-critical components: message transmission should proceed as quickly
as possible, often subject to real-time constraints. The granting of permis-
sion to communicate, however, is arguably not as time critical. In many
integration systems, registration is performed only once per participant,
whereas routing is performed many times per participant. Finally, a
mechanism may allow its number of registrars to be different from its
number of routers. For example, a mechanism with a single registrar may
have multiple routers to optimize message transmission.

5.5 Message Transforming Functions

Type: MTF
Supertypes: Object
Operations: Transform

A message transforming function (MTF) transforms a message in transit
into a (possibly empty) poset of messages that may be delivered to other
listeners. An MTF also has a state (the values of its attributes) that can
affect its output. Formally, let M be the set of all messages, L be the set of
all listeners, and S be the set of all MTF states, and recall that POSET(X)

Event-Based Software Integration • 391

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 4, October 1996.

is the set of all partially ordered sets of X. An MTF is a function

f : M 3 L 3 S3 POSET~M 3 L! 3 S.

For the purposes of converting messages into other messages and/or
rerouting them to other listeners, messages and listeners are in the domain
and range of an MTF so they can be changed by the MTF. The range
contains a poset to allow the output of the MTF to be combined with a
router’s poset of undelivered messages, as described in Section 5.4. Having
a state gives an MTF the ability to base its output on previously received
messages (e.g., on sequences of messages), not just the single message
given as input. For example, if we want an MTF that outputs a message m0
whenever it receives the message sequence (m1, m2, m3), then the MTF
could change state on receipt of m1, change state again on receipt of m2,
and then output m0 on receipt of m3. Of course, a simple MTF function
could ignore its state information. MTFs are equivalent in power to on-line
Turing Machines [Hennie 1966].
Most integration systems support some message transforming functions:

most commonly, filters. FIELD [Reiss 1990] listeners register message
patterns (filters) to specify which kinds of messages they receive. ToolTalk
[SunSoft 1993] allows listeners to register filters that accept or reject
messages based on their “class.” Bart [Beach 1992] uses “declarative glue”
and relational algebra to design filters that select relevant data. Policies in
Forest [Garlan and Ilias 1990] provide aggregation. A more subtle example
of aggregation is that of Odin [Clemm and Osterweil 1990], in which objects
have multiple dependents, all of which must (effectively) send an “up-to-
date” message before the target object can send its own.

5.6 Delivery Constraints

Type: Delivery_Constraint
Supertypes: Object

A delivery constraint is a property of message delivery that is enforced by
a mechanism. Examples are order of delivery, timing of delivery, and
atomicity properties (e.g., a message is delivered either to all or none of its
intended listeners). Delivery constraints can be represented by any of a
number of formalisms, including temporal logic [Koymans 1992] and par-
tially ordered sets [Luckham et al. 1995; Mishra et al. 1991].
In the EBI framework, a distinction is made between two classes of

delivery constraints. A system delivery constraint is one that applies to all
messages sent in the mechanism. These constraints often arise due to
underlying physical constraints, such as “messages can be transmitted no
faster than 10 megabits per second.” A user delivery constraint may apply
only to some messages sent in the mechanism—for example, “Messages of
type t have higher priority than all other messages and should be delivered
first.”
It is possible for delivery constraints to be inconsistent with one another.

A mechanism can have policies for resolving such inconsistencies. In

392 • Daniel J. Barrett et al.

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 4, October 1996.

addition, violations of delivery constraints may or may not be permitted by
a mechanism. When permitted, a policy for responding to such violations
can be specified.
Delivery constraints are found in some integration systems. ISIS [Bir-

man 1993] has “message delivery orderings” that enforce causal relation-
ships between messages. Consul [Mishra et al. 1993] has an “order proto-
col” that enforces orderings on received messages. The Amiga Exec
[Commodore-Amiga 1992] allows listeners to be prioritized for receiving
messages. The router in Garlan and Scott’s extended Ada [Garlan and Scott
1993] delivers messages to listeners in an order defined statically in the
router’s source code. The hard and soft deadlines of real-time systems also
are examples of delivery constraints.

5.7 Groups

Type: Group
Supertypes: Object
Operations: Add_Member, Remove_Member, Is_Member, Members_Of

Objects in the EBI framework, such as participants and framework
components, can be collected into sets called groups and treated as a unit.
The objects in a group are called its members. Groups may themselves be
members of other groups, but a group cannot contain itself directly or
indirectly. Groups may be empty. A simple example of a group is a mail
alias, in which a single mail address is used to represent a set of mail
addresses, each of which may itself be an alias.
Groups can be used to support composition. For example, a set of

registrars, routers, and participants can form a group that itself registers
to be a participant, as shown in Figure 3. Groups have other uses as well;
for example, one could define a group of messages to mean that the
messages should be considered logically equivalent.

Fig. 3. Composition using groups. Registrar 1, Router 1, and Participants 1 and 2 form a
group. The group itself is registered as a participant with Registrar 2. Communication to and
from the group is accomplished by sending messages between the two routers.

Event-Based Software Integration • 393

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 4, October 1996.

It is possible to model groups indirectly using attributes; for example, a
set of objects whose types share an attribute could be considered a group.
Attributes, however, do not have special semantics associated with them,
and issues such as naming and multiple group membership can make an
attribute-based grouping model awkward to use. Therefore, the EBI frame-
work models groups explicitly.
Groups appear in various integration systems, though generally only

participant groups are supported. ISIS [Birman 1993] provides support for
several kinds of participant groups, in which the members have varying
degrees of awareness of each other. FIELD [Reiss 1990] supports partici-
pant grouping both explicitly (participants can limit the scope of their
broadcasts to a select group) and implicitly (all participants that register a
given message pattern form a group). The Pilgrim Event Notifier [DiBella
1994] provides “subscription lists” as a grouping mechanism for listeners,
and a message sent to a list is routed to all of the list’s members. Schooner
[Homer and Schlichting 1994] and Cronus [Schantz et al. 1986] have
multiple servers, each serving a group of participants. SoftBench [Gerety
1990] tools can encapsulate multiple participants, implicitly forming a
group.

5.8 Specification of Mechanisms

Having defined the framework components, we now turn our attention to
framework instantiation. A mechanism specification, which defines all the
instantiated properties of a mechanism, is created by defining the types,
instances, policies, and languages that comprise an integration mechanism
and distinguish it from other integration mechanisms. Each of these
definitions is elaborated below, using general descriptions and motivating
examples.

—Define subtypes and restrictions (i.e., removal of unneeded attributes or
operations) of framework components, messages, and groups:
—Subtypes/restrictions of Message. For example, FIELD [Reiss 1990]
messages are restricted to strings, but ACA [Patrick 1993] messages
are abstract data objects. ToolTalk [SunSoft 1993] messages are re-
stricted to be sent asynchronously only,7 whereas Polylith [Purtilo
1994] supports both synchronous and asynchronous communication.

—Subtypes/restrictions of Registrar. For example, systems that combine
the registrar and router into a single component (e.g., Purtilo [1994]
and Reiss [1990]) can create a subtype that inherits from both Registrar
and Router.

—Subtypes/restrictions of Router. For example, Polylith uses the polling
model of message delivery, and SoftBench [Gerety 1990] uses the active
model. The ARexx [Zamara and Sullivan 1991] router is restricted to
point-to-point communication, whereas FIELD permits multicasting. A

7Synchronous messaging can be built from asynchronous messaging, but this requires addi-
tional implementation work by any developer using ToolTalk.

394 • Daniel J. Barrett et al.

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 4, October 1996.

message history mechanism can be modeled by creating a subtype of
Router with a History attribute, containing all messages the router has
handled.

—Subtypes/restrictions of MTF and Delivery_Constraint. For example,
Consul [Mishra et al. 1993] has four subtypes of message-ordering
constraints available.

—Subtypes/restrictions of Group. For example, ISIS [Birman 1993]
groups can contain only participants, and their members may or may
not be aware of one another.

—Define instances of framework components and groups:
—Particular registrars and routers. For example, SoftBench has only one
router, but Schooner [Homer and Schlichting 1994] supports multiple
routers.

—Particular message transforming functions. For example, particular
Forest [Garlan and Ilias 1990] policies are specified in “Policy Defini-
tion Files.”

—Particular delivery constraints. For example, Consul supports the
definition of acceptable partial orderings of messages.

—Particular groups (not involving participants). For example, in
ToolTalk, the message server could conceptually be viewed as a
grouped registrar and router.

—Define policies for handling violations or resolving mismatches:
—Synchronization mismatches. For example, if an informer and listener
with incompatible Send and Receive synchronization attempt to com-
municate, some intermediate buffering may be necessary.

—Access control violations. For example, Zephyr [DellaFera et al. 1988]
uses the Kerberos [Steiner et al. 1988] authentication system to
enforce access control.

—Delivery constraint violations. For example, real-time systems specify
that the violation of a time constraint indicates either complete or
partial failure of the system.

—Delivery constraint inconsistencies. For example, if two participants
register conflicting delivery constraints, at least one registration must
be rejected.

—Mechanism specification violations. For example, if a component acts in
a way contrary to its specification, an exception could be raised.

—Provide languages for describing MTFs, delivery constraints, and que-
ries. For example, the MTF language of FIELD can describe only
filters; Forest can describe only aggregators (since a policy action can
be either a single message or the empty message); and CORBA [Digital
Equipment et al. 1993] specifies no MTF language at all.

An initial mechanism specification statically describes the mechanism
upon instantiation. If the components of an integration approach can
change over time, this is modeled simply by changing the mechanism

Event-Based Software Integration • 395

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 4, October 1996.

specification. For example, one might add new message transforming
functions or change the number of routers. Of course, arbitrary changes
might introduce inconsistencies into the mechanism, so some restrictions or
consistency checking may be necessary.
Mechanism specifications do not define participant-related information,

such as participant types and instances. These are given in configuration
specifications, the subject of the next section.

5.9 Specification of Configurations

A configuration specification, which describes participants and their allow-
able interactions, is created by defining types, instances, groups, and
policies that pertain to participants. Each of these definitions is elaborated
below. A participant instance can register to support all, or only a subset, of
the defined interactions, but it cannot legally violate the configuration
specification. A configuration specification defines the following:

—Participant types. This includes each type’s attributes, operations, and
allowable messages. For example, CORBA [Digital Equipment et al.
1993] has an Interface Definition Language for creating participant
types.

—Instances of participant types and subtypes. For example, Polylith [Pur-
tilo 1994] participants (called “tools”) can be defined as instances of types
(called “modules”).

—MTFs and delivery constraints (defined in a mechanism specification)
that may be used by participant types or instances. For example, Forest
[Garlan and Ilias 1990] policies are associated with listeners.

—Group instances containing participants. For example, DEEDS [Liang et
al. 1994] allows the specification of particular groups of participants.

—A policy for handling configuration specification violations. For example,
listeners in CORBA have exceptions defined as part of their interfaces.

An initial configuration specification statically describes the configura-
tion of the initial mechanism specification. If an integration approach
supports dynamic reconfiguration of its participants, this is modeled simply
by providing a new configuration specification. For example, a new partic-
ipant type or instance could be added. Again, changes to the configuration
specification may have to be checked for consistency.

6. CASE STUDIES

Many existing integration systems can be viewed as instantiations of the
EBI framework. We present reasonable mechanism specifications for three
well-known integration approaches: the implicit invocation system FIELD
[Reiss 1990], the software bus system Polylith [Purtilo 1994], and the
object-oriented CORBA 2.0 specification [BNR Europe et al. 1995; Digital
Equipment et al. 1993]. As the framework is intended for high-level
comparison of systems, these case studies address conceptual, not opera-

396 • Daniel J. Barrett et al.

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 4, October 1996.

tional (implementation), aspects of these systems. Once the mechanisms
are mapped to the framework, the task of comparing and contrasting the
systems becomes much easier, as we demonstrate.
Comparison of integration mechanisms is an important, practical task for

several reasons. It is necessary at some level when deciding which of
several mechanisms is most suitable for one’s purposes. The EBI frame-
work provides a useful level of abstraction for this comparison. In addition,
such comparisons can facilitate interoperability between integration mech-
anisms. By identifying the components and functionality that are common
among the mechanisms, attention is focused on the core features of the
mechanisms, allowing a software developer to exploit their similarities and
address their differences. One similarity that we will see in the case studies
is that all of the mechanisms have a readily identifiable router component.
Thus, one approach to interoperability would be to group the different
router types into a single router that can handle messages from all three
mechanisms. An important difference between the mechanisms, however,
is that one provides point-to-point communication; one provides multicast;
and one provides both. The EBI framework calls attention to this important
distinction that must be addressed by any plan for interoperability among
the mechanisms.
This section utilizes the framework types and operations defined in

Appendix A. The case study for FIELD uses these type definitions in detail
to illustrate how the EBI framework is used, and the remaining case
studies provide more abbreviated information.

6.1 FIELD

FIELD [Reiss 1990] has a client-server architecture, as shown in Figure 4.
Client programs, called tools, broadcast messages anonymously by sending
them to a central message server, called Msg. Tools specify the classes of
messages that they want to receive by registering message patterns with

Fig. 4. Components of FIELD, plus participants. Tool 1 sends message m to Msg. Msg routes
the message to all tools that have registered a message pattern matching m. The Policy Tool is
optional and not pictured.

Event-Based Software Integration • 397

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 4, October 1996.

Msg. Msg delivers to each tool only the messages that match the tool’s
message patterns.
FIELD provides an optional tool, called the Policy Tool, that can inter-

cept messages and perform user-specified actions on receipt of those
messages (reroute messages, replace them with other messages, etc.).
These user-specified actions, called policies, are external to tools, so no tool
modification is necessary to enforce policies. An example policy is, “exiting
the text editor should cause an automatic recompilation of the program
that was edited.” We defer discussion of the Policy Tool until Section 6.1.3.

6.1.1 An Informal Mapping for FIELD. We begin by informally identi-
fying aspects of FIELD that are likely candidates to be mapped to the EBI
framework. Experience has shown us that a usable mapping is often
produced by considering participants, messages, registrars, routers,
groups, MTFs, and delivery constraints, in order.

Participants and Messages. FIELD tools are programs that communi-
cate with one another, so we define them to be participants. Since tools may
send and/or receive messages, they may be informers and/or listeners.
Tools communicate via FIELD messages, which we map to framework
messages.

Registrars and Routers. FIELD tools register to receive messages (that
is, to be listeners) by providing message patterns to Msg, so we define Msg
to be a registrar. Tools need not register explicitly to send messages (to be
informers); this registration is done automatically as part of adaptation, as
will be described in Section 6.1.4. Messages are routed to their destinations
by Msg, so we define Msg also to be a router.

Groups. FIELD has a facility that allows a set of tools to multicast
messages only among themselves [Reiss 1996]. This is clearly a form of
participant grouping.

MTFs and Delivery Constraints. The purpose of a FIELD message
pattern is much like that of a function that accepts or rejects a message m,
depending on whether or not it matches the pattern. If listener l registers a
message pattern p, and message m is broadcast by some tool, then listener
l receives message m only if m matches pattern p. This behavior can be
modeled by an MTF that takes m as input and outputs the pair (m, l) if and
only if m matches pattern p. For delivery constraints, Msg must deliver
messages in the order it receives them.
Once we have informally mapped the parts of FIELD onto the EBI

framework, we perform the phases of instantiation, adaptation, and config-
uration, as given in Section 3.

6.1.2 Instantiation. We perform the instantiation phase according to
the mechanism specification definition in Section 5.8 and the type defini-
tions in Appendix A. A detailed instantiation of FIELD appears in Appen-
dix B.

398 • Daniel J. Barrett et al.

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 4, October 1996.

Subtypes of Message. All FIELD messages are strings. We model this by
having FIELD’s message type inherit from the EBI framework types
Message and String.

Subtypes of Registrar and Router. Since Msg needs the capabilities of a
registrar and a router, we define a type MSG that is a subtype of both
Registrar and Router. FIELD specifies a set of Msg operations [Reiss 1996]
that we define as type MSG operations and map to operations of the
Registrar and Router types:

—MSGconnect. This function establishes a connection between a tool and
Msg so that it can send messages. We map it to Registrar.Register_In-
former.

—MSGregister. This function is used to register message patterns. We
map it to the operation Registrar.Register_MTF because message patterns
represent MTFs.

—MSGsend. This function sends a message asynchronously. We map it to
a Router.Send operation that sets the message’s synchronization attribute
to “asynchronous.”

—MSGcall. This function sends a message synchronously. We map it to
another Router.Send operation that sets the message’s synchronization
attribute to “synchronous.”

—MSGcallback. This function sends a message synchronously and tempo-
rarily registers the sender to receive a particular pattern in response. We
map it to the following sequence of operations:

Registrar.Register_Listener_Active
Registrar.Register_MTF
Registrar.UnRegister_Listener_Active

—MSGreply. This function sends a reply to a synchronous message. We
map it to the operation Router.Send.

Subtypes of MTF. We define a subtype of MTF, Message_Pattern, corre-
sponding to FIELD message patterns. Its Transform operation behaves as
follows:

—Message_Pattern.Transform(m, l) return (mnew, lnew). If m matches the
message pattern, then m is copied to mnew, and lnew is the listener who
registered the message pattern. If m does not match the message pattern,
the empty poset is output.8 Although the Transform operation provides
the parameter l, it is not needed for this computation.

Subtypes of Delivery_Constraint. This is discussed as part of the Policy
Tool in Section 6.1.3.

8To simplify the notation, we denote the return type by a single message/listener pair, when in
fact it is a poset of size one (or zero).

Event-Based Software Integration • 399

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 4, October 1996.

Restrictions of Group. The only groups that FIELD supports are groups
of participants, called “Message Groups.” These are formed using an
alternative use of MSGconnect, which not only can register informers (as
shown in “Subtypes of Registrar and Router,” above), but also can allow
informers to restrict the scope of their multicasts. We map this FIELD
operation to the framework operation Group.Add_Member.

Particular Registrars and Routers. FIELD allows multiple instances of
Msg, but no more than one per user per host.

Particular MTFs. The FIELD specification does not predefine any par-
ticular instances of message patterns.

Particular Delivery Constraints. FIELD enforces the following delivery
constraint for Msg: “the router delivers messages in the order that it
receives them.”

Particular Groups. FIELD does not predefine any groups.

Synchronization Mismatches. Synchronization is determined by the
sender of a message, and listeners have no control over it. Thus there can
be no mismatches.

Access Control Violations, Delivery Constraint Violations, Delivery Con-
straint Inconsistencies, Mechanism Specification Violations. FIELD does
not specify any means of handling these exceptional conditions.

Languages. The MTF language is printf-style strings.

6.1.3 The FIELD Policy Tool. The FIELD environment provides a
number of software engineering tools—editor, debugger, cross-referencer,
etc.—in addition to its event-based integration system. The Policy Tool is
unique among FIELD’s supplied tools because it can have a significant,
systemwide effect on the delivery of messages. Modeled after Forest [Gar-
lan and Ilias 1990], the Policy Tool behaves according to user-defined rules,
called policies, that can intercept and replace messages in transit. In this
section, we model the key features of the Policy Tool: policies, the rerouting
of messages to the Policy Tool, policy registration, policy evaluation order,
and the policy language. These definitions supplement the FIELD mecha-
nism specification given in Section 6.1.2.
A FIELD policy can be modeled as an MTF because it takes as input a

message m, originally sent to the Policy Tool, and outputs messages to
other listeners. We define a subtype of type MTF, called Policy, with the
following Transform operation. Let X* represent zero or more occurrences of
X (Kleene closure).

—Policy.Transform(m, l) return (M 3 L)*. If m matches the specification of
the policy, then the output is the sequence9 of message/listener pairs to

9The FIELD Policy Tool outputs sequences of messages, that is, a restricted form of posets. We
simplify the notation correspondingly.

400 • Daniel J. Barrett et al.

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 4, October 1996.

be delivered in accordance with the policy. l is always the Policy Tool and
is therefore ignored.

If the Policy Tool is used, then an MTF of this type is automatically
registered for every listener. Another MTF is used to model the rerouting of
messages to the Policy Tool for processing, instead of simply being sent to
registered listeners. We define another subtype of type MTF, called
To_Policy, with the following Transform operation:

—To_Policy.Transform(m, l) return (mnew, lnew). m is copied to mnew, and
lnew is the Policy Tool.10 Although the Transform operation provides the
parameter l, it is not needed for this computation.

Since the Policy Tool allows other tools to register MTFs (policies) with it,
it needs the functionality of a registrar (for registration) and a router (for
containing MTFs). We define a type, Policy_Tool, that inherits from types
Registrar and Router. Since the Policy Tool is also a participant, Policy_Tool
also inherits from type Participant.
The rules in a FIELD policy are evaluated in the order that they are

specified. This provides user-definable control over the order in which
messages are processed and are output by the Policy Tool. We model this as
a type of delivery constraint over order of delivery.
Finally, we note that the policy language must be part of the mechanism

specification. It consists of rules and triggered operations [Reiss 1996].

6.1.4 Adaptation. Software modules are adapted into FIELD partici-
pants by wrapping or modifying their source code to make calls to Msg’s
Router.Send operation (FIELD’s MSGsend/MSGcall family of functions).
FIELD specifies that all tools are automatically registered as informers on
startup; thus, the wrapper or modification must ensure that Registrar.Reg-
ister_Informer (MSGConnect) is invoked automatically for each participant
instance at the start of its execution.

6.1.5 Configuration. Now we define the configuration specification ac-
cording to the definition in Section 5.9.

Participant Types. FIELD predefines types for the Policy Tool and many
other tools provided in the FIELD environment: debugger, cross-reference
server, profiler, etc. [Reiss 1996].

Participant Instances. No instances of participants are defined in the
FIELD specification.

MTFs and Delivery Constraints as Used by Participants. Message pat-
terns (MTFs) are associated with the listeners that register them. No
delivery constraints are associated with particular participants.

Group Instances Containing Participants. No particular instances are
defined by the FIELD specification.

10Again, we simplify the notation, recognizing that the output is a poset of size 1.

Event-Based Software Integration • 401

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 4, October 1996.

Configuration Specification Violations. FIELD defines no rules for han-
dling violations of the above specifications.

Appendix B provides a full specification of FIELD in terms of the EBI
framework’s type model.

6.2 Polylith

Polylith has a software bus architecture, as shown in Figure 5. Individual
programs, called tools, connect their input and output ports to an abstract
bus and send and receive messages on named bus channels. A module
interconnection language (MIL) is used to encapsulate external programs
as tools and then bind the output ports of tools to the input ports of other
tools.11 Messages may be of simple, structured, or pointer types.
In terms of the EBI framework, Polylith tools are participants (subtypes

of type Participant). The bus incorporates the functionality of both a
registrar and a router and is therefore a subtype of both Registrar and
Router. Software modules are adapted into participants by modifying their
source code to replace function calls with bus calls and then creating a
configuration specification in MIL. Registration is accomplished with the
Registrar operations Register_Informer and Register_Listener_Polling. (These
are both encompassed by Polylith’s mh_init function for the initial registra-
tion and mh_rebind for reregistrations.) Unregistration is handled by
UnRegister (Polylith’s mh_rebind and mh_shutdown operations).12 Messages

11Polylith is not a bus in the hardware sense, since messages are not broadcast; they are
either multicast or sent point-to-point between tools.
12A single call of mh_shutdown by any participant unregisters all participants and shuts down
the bus.

Fig. 5. Components of Polylith, plus participants. A message m sent by Tool 1 on a given bus
channel is received by Tool 2 and Tool 3 that are listening on that bus channel. Similarly, a
message n is sent from Tool 3 to Tool 2 along a different bus channel.

402 • Daniel J. Barrett et al.

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 4, October 1996.

are sent and received using the Router operations Send (Polylith’s mh_write
function) and Receive (Polylith’s mh_read family of functions).
Polylith supports no MTFs except for the simple filtering provided by bus

channels (i.e., a listener connected to a set of bus channels receives only the
messages on those channels). There are no user-definable delivery con-
straints. Polylith has no explicit support for groups, so in this mapping we
do not use the EBI framework’s Group type; but the participants connected
to a given bus channel could be considered an implicit “group.” Configura-
tion specifications are written in MIL and define participant types (called
“modules” in Polylith’s terminology), participant instances (“tools”), mes-
sage types (“interface statements”), and the Access_Control attributes of
message types (“bind statements”) that specify which tools are connected to
which bus channels. Polylith assumes that the configuration specification
is never violated, i.e., all specified interconnections are created, and all
messages are correctly formed.

6.3 CORBA

CORBA is a specification of a client-server architecture for software inte-
gration. CORBA takes a hybrid approach, incorporating aspects of both
event-based integration and remote procedure call (RPC). Viewed as an
event-based approach, CORBA provides registration, point-to-point mes-
sage passing with the aid of routers, grouping, and several (albeit weak)
delivery constraints. Viewed as an RPC approach, CORBA specifies mes-
sage-passing operations that return a value from a listener to an informer,
just as an RPC can return a value from the callee to the caller. The EBI
framework is not intended to model procedure call semantics; so in this
case study, some aspects of CORBA cannot be mapped to the framework
naturally. By modeling the event-based aspects, however, we have captured
essential details of CORBA’s 100-page specification, making it possible to
perform a meaningful comparison between CORBA and other purely event-
based integration mechanisms.
In the CORBA model, shown in Figure 6, programs, called clients,

transmit messages, called requests, to uniquely identifiable, encapsulated
entities, called objects. All messages are point-to-point; CORBA does not
model multicasting. Objects respond to requests by executing operations.
Each object has a type, called its interface, that defines the operations and
attributes available to clients via that object. Operations are defined by
listing their signatures. Attributes are named values that are accessible via
“get” and “put” operations. Interfaces are written in CORBA’s Interface
Definition Language (IDL). IDL is declarative only, containing no control
statements. Operations are implemented using a traditional programming
language, and a CORBA implementation must provide a mapping (stub
generation) between IDL and declarations of the programming language.
IDL supports various basic and structured types, multiple inheritance, and
exception types.
Clients communicate with objects indirectly via servers called object

request brokers (ORBs). ORBs provide transparent object location and

Event-Based Software Integration • 403

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 4, October 1996.

delivery of requests. CORBA also specifies two kinds of repositories:
interface repositories, containing object interfaces, and implementation
repositories, containing information about the location of objects.
CORBA does not specify the names of most of its operations, leaving

them to be determined by each implementation. Consequently, when map-
ping CORBA to the EBI framework, we present few mappings to functions.
In terms of the EBI framework, CORBA distinguishes two types of

participants: clients and objects (both subtypes of Participant). All clients
are informers (and may also be listeners) whose purpose is to send requests
to objects. All objects are listeners (and may also be informers) whose
purpose is to respond to requests from clients. Clients may be objects and
vice versa.
The CORBA “request” type is a subtype of Message with four additional

attributes:

(1) target object: a reference to the object intended to receive the request.
(2) operation: the action to be taken by the receiving object.
(3) A set of zero or more parameters of the operation. A parameter

consists of a name, a value, and a parameter attribute of IN, OUT, or
INOUT.

(4) request context: a set of name/value pairs, in which the values are
strings, similar to UNIX environment variables. A request context is
described as “additional, operation-specific information that may affect
the performance of a request” [Digital Equipment et al. 1993].13

A request, like a remote procedure call, can optionally return a result.
Thus, CORBA’s ORBs have the ability to associate a request (from client to

13It is unclear why request contexts are distinguished from operation parameters. This
decision probably reflects UNIX biases—i.e., as environment variables are distinguished from
command-line arguments.

Fig. 6. Components of CORBA, plus participants. A client sends a request, m, which is routed
to the intended object by an ORB. The object optionally returns a value, r, which is routed
back to the client by the ORB.

404 • Daniel J. Barrett et al.

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 4, October 1996.

object) with a return value (from the object back to the client). This feature
is beyond the capabilities of a router, so it cannot be mapped to the EBI
framework.
A software module is adapted to become a CORBA client by instrument-

ing its source code to contact an ORB. A software module is adapted to
become a CORBA object in two steps:

(1) A software developer writes an IDL wrapper for the module, which is
then compiled into stubs.

(2) The IDL wrapper may use different operation names than the ones
found in the module. If so, a software developer must reconcile this
difference: either by creating a second, intermediate wrapper that sits
between the IDL wrapper and the module, or by modifying the module
to use the IDL-generated operation names.

ORBs serve as both registrars and routers and are therefore subtypes of
both Registrar and Router. As registrars, they permit objects to register
their existence and clients to register their interest in obtaining services
from objects, using Register_Informer and either of the operations Register_
Listener_Polling or Register_Listener_Active (depending on the CORBA im-
plementation). As routers, ORBs route each client request to an object
whose interface specifies that it can satisfy the request. All requests are
point-to-point between client and object with assistance by an ORB.
The CORBA specification provides no MTFs. Some CORBA implementa-

tions, however, augment their ORBs with the ability to filter messages.
Staying entirely within the CORBA specification, it may be possible for an
object/participant to model an MTF, but there is no ORB support for
allowing such an object to intercept requests intended for another object
(e.g., to perform filtering).
CORBA defines two delivery constraints, called execution semantics, that

can be associated with a request. “At Most Once” semantics specify that a
request will be received by the intended listener exactly once, or else an
exception will be raised. “Best Effort” semantics specify that delivery is not
guaranteed, and no exception is raised if delivery fails.
CORBA 2.0 provides explicit support for grouping using domains, where

a domain is a “set of objects sharing a common characteristic or abiding by
common rules” [BNR Europe et al. 1995]. A domain may itself be an object
and a member of other domains, thereby supporting composition. There
appear to be no operations supported by CORBA, however, that operate on
the members of a group (e.g., multicasting a request to all objects in a
group).
Configuration specifications for CORBA are written in IDL, and they

specify only CORBA object (participant) types.14 Policies for handling
configuration specification violations are limited to several standard excep-
tions (transient failure, object does not support operation, etc.). IDL pro-

14There is only a single Client type.

Event-Based Software Integration • 405

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 4, October 1996.

vides no way to specify the remaining parts of a configuration specification:
MTFs and delivery constraints for participants, instances of participants,
or groups.

6.3.1 CORBA Event Service. The CORBA Event Service [Object Man-
agement Group 1994] is an abstraction for event-based integration that has
been designed on top of CORBA. It provides informers and listeners
(“suppliers” and “consumers,” respectively) that communicate via routers
(“event channels”) that support both polled (“pull”) and nonpolled (“push”)
message passing. Event channels also act as registrars, allowing consumers
and suppliers to register to receive all messages that pass through a given
event channel. (That is, event channels broadcast to all registered consum-
ers.) Other semantics of event channels, such as the use of MTFs or
delivery constraints, are intentionally unspecified and left up to the de-
signer of the event channel. Suppliers, consumers, and event channels are
CORBA objects, and communication occurs via CORBA requests. As a
CORBA Service, the Event Service need not be included in a CORBA
implementation.

6.4 Comparison

The features of FIELD, Polylith, and CORBA (minus the optional Event
Service add-on) described in the case studies are summarized in Table I.
The three integration mechanisms have a number of notable similarities,
some of which are apparent in Figures 4 through 6. All three mechanisms
have readily identifiable participants that are adapted by source code
modification, wrapping, or both. All of the mechanisms combine the func-
tionality of registrar and router into a single component. Finally, none of
the mechanisms provide queries over sets of objects, nor user-specifiable
actions to handle configuration specification violations.
The three integration mechanisms differ significantly as well. FIELD has

only one message type (string), limited user-definable delivery constraints,
and no notion of explicit configuration specifications. Polylith has no
user-definable delivery constraints, no MTFs except filters, no explicit
groups, and no manner of handling configuration specification violations.
CORBA has no multicasting, no MTFs, no user-definable delivery con-
straints, and no explicit specification of integration object instances.
This comparison points out similarities and differences that are central

to the underlying behavior of these three systems, producing a clear,
concise means of comparison between mechanisms, without getting bogged
down with implementation details. Each row of Table I emphasizes an
important interoperability issue. Similarities in a row indicate areas of
high-level compatibility between mechanisms. Differences in a row call
attention to potential interoperability trouble spots, such as the following:

—Of the three mechanisms, only CORBA does not support multicasting
and filtering (though some of its implementations add these capabilities).
Thus, in order for participants from all three mechanisms to receive

406 • Daniel J. Barrett et al.

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 4, October 1996.

messages in a consistent manner, an additional layer of abstraction
around CORBA’s routers (ORBs) may be necessary to provide these
features.

—All three mechanisms have different message types. Two points of
contention are how Polylith’s pointer types should be interpreted by the
other mechanisms that do not support pointers and how to handle
structured types so FIELD can interpret them as strings.

—If a FIELD or CORBA informer sends a message to a Polylith listener,
and the message gets lost in transit, Polylith has no means of announcing
this failure, since it cannot handle configuration specification violations.
This is a problem because the informer expects to see a NULL return
value for FIELD or raised exception for CORBA if a message fails to
arrive.

Table I. Features of FIELD, Polylith, and CORBA

(a) Instantiation

Feature FIELD Polylith CORBA

Message Types String Simple, structured,
and pointer types

Simple, structured, and
interface types

Registrar Msg message server Bus ORBs
Router Msg pattern-

matching engine
Bus ORBs

Message Sending Multicast Point-to-point,
multicast

Point-to-point

Message Delivery Nonpolling (passive) Polling (active) Unspecified
MTFs Filters, policies Filtering by bus

channel
None specified

Delivery Constraints Policy priorities Not user definable At most one, best effort
Grouping Participant groups None Participant and router

groups, called
domains

Specify Framework No No No
Component
Instances?

(b) Adaptation

Method Wrap or modify
source code

Wrap and modify
source code

Wrap and modify source
code

(c) Configuration

Participants Msg clients
(executable
programs)

Bus tools
(executable
programs)

Client and objects
(executable programs)

Specify Participant No Yes No
Instances

Configuration Spec Not user definable MIL specification IDL specification
Config Violation NULL return value None Predefined exceptions
Handling

Event-Based Software Integration • 407

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 4, October 1996.

7. CONCLUSIONS

More than 50 event-based integration systems are available today. Their
models and terminology vary widely, and their documentation can be
hundreds of pages long. Software engineers need to compare these systems,
but the state of the art is to do an ad hoc comparison. The EBI framework
provides a systematic method of comparison. It identifies common compo-
nents, their basic features, and likely dimensions along which these compo-
nents may differ. This provides a concise representation of important
similarities and differences between integration mechanisms.
We have demonstrated the EBI framework’s effectiveness by modeling

three different, well-known integration approaches. By highlighting signif-
icant similarities and differences among mechanisms, the EBI framework
provides guidance for choosing an appropriate mechanism for one’s needs.
In addition, it aids interoperability by calling attention to areas of compat-
ibility and concern when planning an interoperability strategy. We plan to
examine, via experimentation, the extent to which this information can be
used directly to support interoperability.
The EBI framework is a reference model, not an implementation guide.

An implementation would have to elaborate important issues beyond the
instantiation of the mechanism, such as an instance model, run-time
system semantics, and languages for MTFs, delivery constraints, and
queries. In addition, while our object-oriented model provides a well-
understood description of objects and their behavior (i.e., ADTs), it implies
that many kinds of objects are first class. This view may not always be
desirable and may have to be addressed directly in an implementation. We
also intend additional exploration of scalability. The EBI framework sup-
ports composition via groups, allowing the model to scale. We plan to
investigate to what extent this composition translates to actual scalability
of implementations.

APPENDIX

A. THE TYPE MODEL

This appendix lists our abstract data types and defines the signatures and
exceptions of their operations. The type model serves two purposes. The first
purpose is to model the parts of the EBI framework, represented by the types
Message, Registrar, Participant, etc. The second purpose is to allow the type
hierarchy itself to be extended with new types of messages, registrars, partic-
ipants, etc., during instantiation. This is accomplished using the types Type,
Object, Attribute, and Operation to model the process of modifying the type
model. For instance, a new router type would be created with Type.Create;
attributes and operations would be added with Type.Add_Attribute and
Type.Add_Operation; and the new type would be linked into the type hierarchy
with Type.Link_To_Supertype and possibly Type.Link_To_Subtype.
All operation parameters are “in” parameters unless otherwise stated.

Common exceptions such as “permission denied” are not listed.

408 • Daniel J. Barrett et al.

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 4, October 1996.

A.1 Types for Modifying the Type Model

(1) MetaType (no supertypes). Type MetaType is introduced as the root of
the hierarchy to avoid a loop in the hierarchy, as discussed in Section 4.
Type MetaType always exists and cannot be removed from the type
hierarchy.
—Do_Query(t: MetaType; q: Query) return ,MetaType.;

Retrieve information about a type or instance via associative access.
No query language is supplied by the EBI framework; one must be
defined in the mechanism specification. The result of this operation is
written as ,MetaType. to indicate that a query can return a value of
any type. An instantiation would provide a more specific type instead
of ,MetaType..

(2) Type (supertypes: MetaType)
—Create(supertypes: set of Type) return Type;

Create a type that is a subtype of supertypes. Initially, it has no
attributes.

—Destroy(t: IN OUT Type);

Destroy a type, automatically unlinking t from all supertypes and
subtypes. Exceptions: t is the sole parent of another type and there-
fore cannot be destroyed.

—Link_To_Supertype(t: IN OUT Type; super: IN OUT Type);

Add type super as a supertype of the type t. Exceptions: super is
already a supertype of t, inheritance policy violation.

—Unlink_From_Supertype(t: IN OUT Type; super: IN OUT Type);

Remove type super as a supertype of the type t. It is not possible to
unlink a type from all of its supertypes except by invoking Destroy.
Exceptions: super is not a supertype of t; deleting super would detach
t from the type hierarchy.

—Supertypes_Of(t: Type) return set of Type;

Return all of t’s supertypes. If t is MetaType, return the empty set.
Otherwise, t is guaranteed to have at least one supertype, by the
semantics of Destroy and Unlink_From_Supertype.

—Subtypes_Of(t: Type) return set of Type;

Return all of t’s subtypes. If t has no subtypes, then the empty set is
returned.

—Add_Attribute(t: IN OUT Type; a: Attribute);

Add the given attribute to the type t. A type cannot have the same
attribute twice, nor two attributes with the same name and the same
type. Exceptions: t already has the attribute a; t already has an
attribute with the same name and type as a.

—Delete_Attribute(t: IN OUT Type; a: Attribute);

Event-Based Software Integration • 409

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 4, October 1996.

Delete the given attribute from the type t. Exceptions: a is not an
attribute of t.

—Attributes_Of(t: Type) return set of Attribute;

Return all attributes of the given type. If t has no attributes, then the
empty set is returned.

—Attribute_From_Name(t: Type; att_name: Attribute_Name; att_type:
Type) return Attribute;

Return the attribute of the type t that has the given name and type.
Note that a type can have two attributes with the same name but
different types. Thus, the attribute type must be supplied as an argu-
ment in addition to the name. An instantiation could disallow a type
from having two attributes of the same name and different types and
thereby eliminate the att_type argument. Exceptions: No such attribute
found.

—Add_Operation(t: IN OUT Type; op: Operation);

Add the given operation to the type t. The same operation cannot be
added twice, and a type cannot have two operations with the same name
and the same signature. A type may have multiple operations with the
same name and different signatures, i.e., overloaded operations. Excep-
tions: op is already an operation of t; t already has an operation with this
name and signature.

—Delete_Operation(t: IN OUT Type; op: Operation);

Delete the given operation from the type t. Exceptions: op is not an
operation of t.

—Operations_Of(t: Type) return set of Operation;

Return all operations of the given type. If t has no operations, then the
empty set is returned.

—Operation_From_Name(op_name: Operation_Name; op_type: Type) re-
turn Operation;

Return the operation of the type t that has the given name and signature
(type). Note that a type can have two operations with the same name but
different types. Thus, the operation type must be supplied as an argu-
ment in addition to the name. An instantiation could disallow a type from
having two operations of the same name and different types and thereby
eliminate the op_type argument. Exceptions: No such operation found.

—Identical(t1, t2: Type) return Boolean;

Determine whether two types are physically the same type.
(3) Object (supertypes: MetaType). Note that type Object is an instance of

type Type.
—Create(t: Type) return Object;
Create a new object of type t.

—Destroy(obj: IN OUT Object);
Destroy an object. Exceptions: Object is already destroyed.

410 • Daniel J. Barrett et al.

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 4, October 1996.

—Set_Type(obj: Object; t: Type);
Set the type of object obj to be t. By default, the object loses the values
of all of its old attributes. Exceptions: Mechanism specification viola-
tion.

—Get_Type(obj: Object) return Type;
Get the type of object obj.

(4) Attribute(supertypes: Object, MetaType)
—Create(n: Attribute_Name; t: Attribute_Type) return Attribute;
Create a new attribute of the given name and type.

—Destroy(a: Attribute);
Destroy the given attribute. Exceptions: Attribute is already destroyed;
attribute sharing violation.

—Set_Value(a: IN OUT Attribute; v: Attribute_Value);
Set the value of the given attribute to the given value. Exceptions: Value
out of range; type mismatch.

—Get_Value(a: Attribute) return Attribute_Value;
Get the value of the given attribute. Exceptions: Attribute has no value.

—Equal(a1, a2: Attribute) return Boolean;
Determine whether two attributes have the same type and value.

(5) Operation(supertypes: Object, MetaType)
—Create(n: Operation_Name; t: Type) return Operation;
Create a new operation of the given name and type. The names and
types of the operands are the attributes of Operation_Type.

—Destroy is inherited from Object.
—Set_Operand_Value(op: Operation; param: Attribute_Name; param_
type: Type; value: param_type);
A convenient renaming of
Attribute.Set_Value(
Type.Attribute_From_Name(op, param, param_type),
value);

—Get_Operand_Value(op: Operation; param: Attribute_Name; param_
type: Type) return param_type;
A convenient renaming of
Attribute.Get_Value(
Type.Attribute_From_Name(op, param, param_type));

A.2 Types for Modeling the Framework

(1) Message (supertypes: Object, MetaType)
—Create(n: Message_Name; t: Message_Type) return Message;
Create a new message of the given name and type. The names and
types of the message parameters are the attributes of Message_
Type.

Event-Based Software Integration • 411

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 4, October 1996.

—Destroy is inherited from Object .
—Set_Parameter_Value(m: Message; param: Attribute_Name; param_
type: Type; value: param_type);
A convenient renaming of
Attribute.Set_Value(
Type.Attribute_From_Name(m, param, param_type),
value);

—Get_Parameter_Value(m: Message; param: Attribute_Name; param_
type: Type) return param_type;
A convenient renaming of
Attribute.Get_Value(
Type.Attribute_From_Name(m, param, param_type));

—Message_From_Name(msg_name: Message_Name; msg_type: Type)
return Message;
Return the message of the type msg_type that has the given name and
type. Note that a type can have two messages with the same name but
different types. Thus, the message type must be supplied as an argu-
ment in addition to the name. An instantiation could disallow a type
from having two messages of the same name and different types and
thereby eliminate the msg_type argument. Exceptions: No such message
found.
If an instantiation disallows a type from having multiple attributes with
the same name and different types, then the param_type argument can
be eliminated from these operations.
Type Message has at least three attributes, as described in Section

5.2:
—Synchronization
—Access_Control
—Delivery_Constraint

(2) Sender (supertypes: Object). This type exists only to provide a common
supertype for Informer and Router, so they can both send messages using
the Router.Send operation.

(3) Participant (supertypes: Object).
—Get_Router(p: Participant) return Router;
Return the router used by participant instance p.

—Set_Router(p: IN OUT Participant; r: Router);
Set the router used by participant instance p. Provisions: Only a
registrar can invoke this operation.

—Get_Registrar(p: Participant) return Registrar;
Return the registrar used by participant instance p.

—Set_Registrar(p: IN OUT Participant; r: Registrar);
Set the registrar used by participant instance p. Provisions: Only a
registrar can invoke this operation.

412 • Daniel J. Barrett et al.

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 4, October 1996.

(4) Informer (supertypes: Participant, Sender).
—Messages_Of(i: Informer) return set of Message;
Return all messages that can be sent by the given informer. If i has
no messages, then the empty set is returned.

(5) Listener (supertypes: Participant). (No additional operations.)
(6) Registrar (supertypes: Object). Note that type Registrar is an instance

of type Framework_Type.
—Register_Informer(r: Registrar; i: Informer; msgs: set of Message)
return Router;
Register an instance of an informer. The returned router has the
Send function that the informer needs for communication. (Note that
this can be a logical router instead of a physical router.) Exceptions:
Configuration specification violation, type error.

—Register_Listener_Polling(r: Registrar; l: Listener) return Router;
Register a listener to receive messages via polling. Message transform-
ing functions can be registered later to filter or otherwise modify the
incoming messages.
The returned router has the Receive function that the informer needs

for communication. (Note that this can be a logical router instead of a
physical router.) Exceptions: Configuration specification violation, type
error, polling model not supported.

—Register_Listener_Active(r: Registrar; l: Listener; op: Operation);
Register a listener to receive messages actively. The given operation is
invoked whenever the listener has a message delivered. Message trans-
forming functions can be registered later to filter or otherwise modify
the incoming messages. Exceptions: Active model not supported.

—Register_MTF(r: Registrar; p: Participant; f: MTF);
Register this MTF to be evaluated whenever a message is sent by p (if p
is an informer) or received by p (if p is a listener).

—Register_MTF_Ordered(r: Registrar; p: Participant; f: MTF; i: Natural);
Register this MTF to be the ith MTF evaluated whenever a message is
sent by p (if p is an informer) or received by p (if p is a listener). The
numeric positions of the original ith, (i11)st, . . . MTFs of that partici-
pant (if they exist) are automatically incremented by 1.
The order of evaluation of a participant’s MTFs can be significant. If it

is not, then Register_MTF should be used instead of this operation.
Exceptions: Config specification violation.

—MTFs_Of(r: Registrar; p: Participant) return sequence of MTF;
List the MTFs associated with the given participant. This is necessary
so a participant can know the order in which its MTFs are being
evaluated so it can modify the sequence with Register_MTF_Ordered.
Other information about a registrar can be obtained using Type-
.Do_Query.

—Register_Delivery_Constraint(r: Registrar; d: Delivery_Constraint);

Event-Based Software Integration • 413

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 4, October 1996.

Register a delivery constraint. A delivery constraint is passed as a single
parameter because it can be arbitrarily complex, containing information
about messages, participants, types, attributes, timing, and more. Ex-
ceptions: Config specification violation; delivery constraint is inconsis-
tent with a previously registered delivery constraint.

—UnRegister(. . .)
Each Register_xxx operation above has a corresponding UnRegis-
ter_xxx operation. Exceptions: The information to be unregistered is
not currently registered; config specification violation.

(7) Router (supertypes: Object, Sender). Note that type Router is an instance
of type Framework_Type.
—Message_Waiting(r: Router; l: Listener) return Boolean;
Is a message waiting for the listener? Exceptions: Polling model not
supported.

—Receive(r: Router; l: Listener) return Message;
Receive the next message intended for the listener. The decision of
which message is returned by Receive when called by listener l is
dependent on l’s registration information, which caused particular router
connections to be made, certain synchronization to be in effect, etc.
Use of Receive implies a polling model for message delivery. For an

active model, see Registrar.Register_Listener_Active. Exceptions:
No message available; message type mismatch; polling model not sup-
ported.

—Send(r: Router; s: Sender; m: Message);
Send the message from a sender (informer or router) to a router for
delivery. Its delivery will proceed in whatever manner is specified in the
message’s attributes (synchronization, delivery constraints, access con-
trol). Exceptions: Recipient not found; delivery constraint violated; mes-
sage type mismatch.

(8) MTF (supertypes: Object)
—Transform(f: MTF; m: Message; l: Listener) return poset of (Message,
Listener);
Apply the MTF to m and l, as defined in Section 5.5. The MTF’s state
may change as a result.

(9) Delivery_Constraint (supertypes: Object). Delivery constraints have no
operations of their own. Router.Send raises an exception when a
delivery constraint is violated.

(10) Group (supertypes: Object)
—Add_Member(g: Group; obj: Object);
Add an object to a group.

—Remove_Member(g: Group; obj: Object);
Remove an object from a group. Exceptions: The object is not in this
group.

—Is_Member(g: Group, obj: Object) return Boolean;

414 • Daniel J. Barrett et al.

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 4, October 1996.

Is the object a member of the group?
—Members_Of(g: Group) return set of Object;
List the members of a group.

(11) Other types. Certain common types (e.g., integer, set, sequence, po-
set, and various types of names) are used in the specification above
but are not formally defined here.

B. DETAILED MAPPING OF FIELD TO THE TYPE MODEL

This section presents a detailed mapping of FIELD to our descriptive type
model. Details on FIELD types and operations can be found in the FIELD
manual [Reiss 1996] and in Section 6.1.
The creation of the types used in this appendix are modeled by the

operations Create, Add_Attribute, Add_Operation, and Link_From_Supertype
of type Type, as explained in Appendix A. We do not present this modeling,
as it is straightforward. For brevity, we also do not present mappings for
most Create and Destroy operations.
Some framework operations require formal parameters that the corre-

sponding FIELD operations do not, because the framework assumes that
many objects are first class (as mentioned in Section 7). For example, some
operations on Msg do not require Msg as a parameter, but the correspond-
ing framework operations do. Similarly, a FIELD tool can send a message
without listing itself as a parameter to the send operation, whereas the
framework’s Router.Send requires the sender (informer) to be listed as a
parameter. To get around these minor modeling difficulties, we have
borrowed the THIS construct from C11[Lippman 1990], allowing the callee
to be referenced within the body of the operation, and introduced an
analogous construct, CALLER, to allow the caller to be referenced.
Some parameters of FIELD are representative of implementation details,

for example, the fact that a file is used to implement a group. We have
noted this where applicable and not mapped such parameters to our type
model.

B.1 FIELD Messages

We use the type FIELD_Message to distinguish FIELD messages from
instances of the EBI framework type Message.

type FIELD_Message (supertypes : String, Message);

In FIELD, messages are created and destroyed using C library functions
such as malloc and free [Kernighan and Ritchie 1990]. Message parameter
values also are set and retrieved using C library functions such as sprintf
and sscanf. We model this by having FIELD_Message inherit all its opera-
tions Create and Destroy from type String, and Set_Parameter_Value and
Get_Parameter_Value from type Message.

Event-Based Software Integration • 415

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 4, October 1996.

B.2 Tools

Type Tool can have any attributes and operations that the FIELD engineer
desires.

type Tool (supertypes : Participant);

B.3 Message Patterns

Message patterns represent MTFs that match a message against a string
(the pattern).

type Message_Pattern (supertypes : MTF, String)
attributes
pattern : String;
registered_by : Listener:

operations
Transform(m : Message; lis : Listener)
return poset of (Message, Listener)

begin
if (m matches pattern) then
return ((m, registered_by)); /* Poset of size 1 */

else
return (empty poset);

end;
end Message_Pattern;

Note that listener lis is always the listener that registered the pattern.

B.4 The Message Server, Msg

type MSG (supertypes : Registrar, Router)
operations
MSGregister(handle : MSG; pattern : Message_Pattern,

function operation(. . .))
begin
Registrar.Register_Listener_Active(handle, CALLER, operation);
Registrar.Register_MTF(handle, CALLER, pattern);

end;

MSGsend(handle : MSG; m : FIELD_Message)
begin
m.synchronization :5 asynchronous;
Router.Send(handle, CALLER, m);

end;

MSGcall(handle : MSG; m : FIELD_Message) return FIELD_Message
begin
m.synchronization :5 synchronous;
Router.Send(handle, CALLER, m);
return(Router.Receive(handle, CALLER));

end;

MSGcallback(handle : MSG; function op(. . .); data : pointer;
m : FIELD_Message)

416 • Daniel J. Barrett et al.

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 4, October 1996.

begin
Registrar.Register_Listener_Active(handle, CALLER, op);
Router.Send(handle, CALLER, m);
Registrar.UnRegister_Listener_Active(handle, CALLER, op);

end;

MSGreply(reply : FIELD_Message)
begin
Router.Send(THIS, CALLER, reply);

end;

MSGconnect()
begin

Registrar.Register_Informer(. . .); /* see below */
end;

end MSG;

In MSGreply, we have omitted the first FIELD parameter because it
represents an implementation detail. The first parameter, an integer, is a
unique ID representing the original message requiring the reply. In our
mapping, we assume that the router (Msg) keeps track of such details
internally.
In MSGregister, we have omitted the fourth and fifth FIELD parameters,

since they are implementation details. The fourth parameter, an integer,
represents the number of arguments in pattern, and the last parameter, an
array of void pointers, represents default values for the pattern.
We do not include an explicit, parameter-by-parameter mapping of

MSGconnect because its parameters in FIELD are highly implementation
specific. For example, FIELD uses a file name (a string) to represent the
connection between the invoking tool and its message server (presumably
more information is stored in the file), and a NULL value means to use Msg
by default. In addition, neither Msg nor the invoking tool are directly
represented by parameters. Nevertheless, the purpose of MSGconnect—to
permit the invoking tool to send messages to the message server—is clearly
analogous to that of Registrar.Register_Informer.

B.5 Groups

The only groups supported by FIELD are participant groups, called “mes-
sage groups.”

type Message_Group (supertypes : Group)
operations
MSGconnect(lock: String; group : Group) return MSG
begin
Group.Add_Member(group, CALLER);
return(Group.Get_Router(group));

end;
end Message_Group;

As noted in Section B.4, FIELD’s MSGconnect function has very imple-
mentation specific parameter types. The first parameter, lock, is not

Event-Based Software Integration • 417

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 4, October 1996.

needed for this use of MSGconnect, so we do not model it. Also, note that
Get_Router is inherited by type Group from type Participant.

B.6 The Policy Tool

Policies are MTFs that are written in a policy language (defined in Reiss
[1996]).

type Policy (supertypes : MTF)
policy_statement: Policy_Language_Statement;

operations
Transform(m : FIELD_Message ; lis : Listener)
return poset of (FIELD_Message, Listener)

begin
/* Apply the policy_statement to the message.
The listener parameter is ignored. */

end;
end Policy;

The Policy Tool maintains policies and applies them to messages that are
sent to it by Msg. We represent the Policy Tool instance as The_Policy_Tool.

type Policy_Tool (supertypes : Registrar, Router, Participant)
operations
Register_Policy(p : Policy)
begin
Registrar.Register_MTF(The_Policy_Tool, CALLER, p);

end;

Register_Policy_Priority(p : Policy; priority : Natural)
d : Delivery_Constraint;

begin
d :5 Delivery_Constraint.Create(p, priority);
Register_Policy(p);
Registrar.Register_Delivery_Constraint(The_Policy_Tool, d);

end;
end Policy_Tool;

An MTF is used to redirect each message to go to the Policy Tool.

type To_Policy (supertypes : MTF)
operations
Transform(m : FIELD_Message; lis: Listener)
return poset of (FIELD_Message, Listener)

begin return((m, The_Policy_Tool)); /* poset of size 1 */
end;

ACKNOWLEDGMENTS

We thank Barbara Lerner, James Purtilo, Steven Reiss, and the reviewers
for their insightful comments on earlier versions of this article.

418 • Daniel J. Barrett et al.

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 4, October 1996.

REFERENCES

ALLEN, R. AND GARLAN, D. 1994. Formalizing architectural connection. In Proceedings of the
16th International Conference on Software Engineering. ACM, New York, 71–80.

APPLE COMPUTER. 1991. Inside Macintosh. Vol. 6. Addison-Wesley, New York, chapt. 4–8.
ARNOLD, J. E. AND MEMMI, G. 1992. Control integration and its role in software integration.
In Proceedings of the 5th International Conference on Software Engineering and its Applica-
tions, J.-C. Rault, Ed. EC2. 107–118. Also Bull System Products Res. Rep. RAD/USARL/
92021. Dec. 1992.

BARNES, J. 1995. Programming in Ada 95. Addison-Wesley, Reading, Mass.
BARRETT, D. J. 1993. SDL BMS: A simple broadcast message server. Arcadia Doc. UM-93-
03, Software Development Lab., Computer Science Dept., Univ. of Massachusetts, Amherst,
Mass. Oct. Available from laser@laser.cs.umass.edu.

BEACH, B. W. 1992. Connecting software components with declarative glue. In Proceedings
of the 14th International Conference on Software Engineering. ACM, New York, 120–137.

BELKHATIR, N., ESTUBLIER, J., AND MELO, W. 1994. ADELE-TEMPO: An Environment to
Support Process Modelling and Enaction. Advanced Software Development Series. John
Wiley and Sons, New York, 187–222.

BEN-SHAUL, I. AND KAISER, G. E. 1995. A Paradigm for Decentralized Process Modeling.
Kluwer Academic, Boston, Mass.

BIRMAN, K. P. 1993. The process group approach to reliable distributed computing. Com-
mun. ACM 36, 12 (Dec.), 37–53.

BNR EUROPE, DIGITAL EQUIPMENT, EXPERSOFT, HEWLETT PACKARD, IBM, ICL, PLC, IONA
TECHNOLOGIES, AND SUNSOFT. 1995. CORBA 2.0/Interoperability. Revision 1.8. OMG TC
Doc. 95.3.xx, Object Management Group, Framingham, Mass. Mar.

BOUDIER, G., MINOT, R., AND THOMAS, I. M. 1989. An overview of PCTE and PCTE1. In
Proceedings of the ACM SIGSOFT/SIGPLAN Software Engineering Symposium on Practi-
cal Software Development Environments. SIGPLAN Not. 24, 2 (Feb.), 248–257.

BROCKSCHMIDT, K. 1995. Inside OLE. Microsoft Press, Redmond, Wash.
CHRYSANTHIS, P. AND RAMAMRITHAM, K. 1990. ACTA: A framework for specifying and reason-
ing about transaction structure and behavior. In the ACM SIGMOD International Confer-
ence on Management of Data. ACM, New York, 194–203.

CLEMM, G. AND OSTERWEIL, L. 1990. A mechanism for environment integration. ACM Trans.
Program. Lang. Syst. 12, 1 (Jan.), 1–25.

COMMODORE-AMIGA. 1992. Amiga ROM Kernel Reference Manual: Libraries. 3rd ed. Addi-
son-Wesley, Reading, Mass.

DELLAFERA, C. A., EICHIN, M. W., FRENCH, R. S., JEDLINSKY, D. C., KOHL, J. T., AND

SOMMERFELD, W. E. 1988. Zephyr notification service. In USENIX Conference Proceed-
ings. USENIX Assoc., Berkeley, Calif.

DIBELLA, K. S. 1994. PEN: Event notification in distributed environments. Tech. Rep.
UM-PILGRIM-94-01, Project Pilgrim, Univ. of Massachusetts, Amherst, Mass. Available as
http://www.pilgrim.umass.edu/pub/pilgrim/papers/pen_conf_paper.ps.

DIGITAL EQUIPMENT, HEWLETT-PACKARD, HYPERDESK, NCR, OBJECT DESIGN, AND SUNSOFT.
1993. The Common Object Request Broker: Architecture and Specification. Revision 1.2.
Object Management Group and X/Open, Framingham, Mass. Incorporated as part of
CORBA 2.0.

FROMME, B. 1990. HP Encapsulator: Bridging the generation gap. Hewlett-Packard J. 41, 3
(June), 59–68.

GARLAN, D. AND ILIAS, E. 1990. Low-cost adaptable tool integration policies for integrated
environments. In Proceedings of the 4th ACM SIGSOFT Symposium on Software Develop-
ment Environments. ACM, New York, 1–10.

GARLAN, D. AND NOTKIN, D. 1991. Formalizing design spaces: Implicit invocation mecha-
nisms. In Proceedings of VDM’91: Formal Software Development Methods. Springer-Verlag,
New York. Also appeared as Carnegie-Mellon Univ. Tech. Rep. CMU-CS-91-114. Mar.

Event-Based Software Integration • 419

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 4, October 1996.

GARLAN, D. AND SCOTT, C. 1993. Adding implicit invocation to traditional programming
languages. In Proceedings of the 15th International Conference on Software Engineering.
IEEE Computer Society, Washington, D.C., 447–455.

GARLAN, D., ALLEN, R., AND OCKERBLOOM, J. 1994. Exploiting style in architectural design
environments. In Proceedings of the 2nd ACM SIGSOFT Symposium on Foundations of
Software Engineering. SIGSOFT Not. 19, 5, 175–188.

GAUTIER, B., LOFTUS, C., SHERRATT, E., AND THOMAS, L. 1995. Tool integration: Experiences
and directions. In Proceedings of the 17th International Conference on Software Engineering.
IEEE Computer Society, Washington, D.C., 315–324.

GERETY, C. 1990. HP SoftBench: A new generation of software development tools. Hewlett-
Packard J. 41, 3 (June), 48–59.

GOLDBERG, A. 1984. Smalltalk-80: The Interactive Programming Environment. Addison-
Wesley, Reading, Mass.

HENNIE, F. C. 1966. On-line Turing machine computations. IEEE Trans. Electron. Comput.
EC-15, 1 (Feb.), 35–44.

HEWITT, C. AND INMAN, J. 1991. DAI betwixt and between: From “intelligent agents” to open
systems science. IEEE Trans. Syst. Man Cybernet. 21, 6 (Nov./Dec.), 1409–1419.

HOMER, P. T. AND SCHLICHTING, R. D. 1994. A software platform for constructing scientific
applications from heterogeneous resources. J. Parallel Distrib. Comput. 21, 3 (June),
301–315.

JAGANNATHAN, V., DODHIAWALA, R., AND BAUM, L. S., Eds. 1989. Perspectives in Artificial
Intelligence. Vol. 3, Blackboard Architectures and Applications. Academic Press, New York.

KAISER, G. E. AND GARLAN, D. 1987. Melding software systems from reusable building
blocks. IEEE Softw. 4, 4 (July), 17–24.

KERNIGHAN, B. AND RITCHIE, D. 1990. The C Programming Language. 2nd ed. Prentice-Hall,
Englewood Cliffs, N.J.

KOYMANS, R. 1992. Specifying Message Passing and Time-Critical Systems with Temporal
Logic. Springer-Verlag, Berlin.

KRISHNAMURTHY, B. AND BARGHOUTI, N. S. 1993. Provence: A process visualization and
enactment environment. In Proceedings of the 4th European Software Engineering Confer-
ence, I. Sommerville and M. Paul Eds. Lecture Notes in Computer Science, vol. 717.
Springer-Verlag, Berlin, 451–465.

LIANG, T.-P., LAI, H., CHEN, N.-S., WEI, H., AND CHEN, M. C. 1994. When client/server isn’t
enough: Coordinating multiple distributed tasks. Computer 27, 5 (May), 73–79.

LIPPMAN, S. B. 1990. C11 Primer. Addison-Wesley, Reading, Mass.
LUCKHAM, D. C., KENNEY, J. J., AUGUSTIN, L. M., VERA, J., BRYAN, D., AND MANN, W. 1995.
Specification and analysis of system architecture using Rapide. IEEE Trans. Softw. Eng. 21,
4 (Apr.), 336–355.

MACBRIDE, A. AND SUSSER, J. 1996. Byte Guide to OpenDoc. Osborne/McGraw-Hill, Berke-
ley, Calif.

MINSKY, N. H. AND ROZENSHTEIN, D. 1990. Configuration management by consensus: An
application of law-governed systems. In Proceedings of the 4th ACM SIGSOFT Symposium
on Software Development Environments, R. N. Taylor Ed. SIGSOFT Not. 15, 6, 44–55.

MISHRA, S., PETERSON, L. L., AND SCHLICHTING, R. D. 1991. Consul: A communication
substrate for fault-tolerant distributed programs. Tech. Rep. 91-32, Dept. of Computer
Science, Univ. of Arizona, Tucson, Ariz. Available as tr_libr@cs.arizona.edu.

MISHRA, S., PETERSON, L. L., AND SCHLICHTING, R. D. 1993. Experience with modularity in
consul. Softw. Pract. Exper. 23, 10 (Oct.), 1059–1076.

MONTANGERO, C. AND AMBRIOLA, V. 1994. OIKOS: Constructing Process-Centred SDEs.
Advanced Software Development Series. John Wiley and Sons, 131–151.

NOTKIN, D., GARLAN, D., GRISWOLD, W. G., AND SULLIVAN, K. 1993. Adding implicit invoca-
tion to languages: Three approaches. In Object Technologies for Advanced Software: Proceed-
ings of the 1st JSSST International Symposium, S. Nishio and A. Yonezawa Eds., Springer-
Verlag, Berlin, 489–510.

OBJECT MANAGEMENT GROUP. 1994. Common Object Services Specification. 1st ed. Vol. 1.
Object Management Group, Framingham, Mass.

420 • Daniel J. Barrett et al.

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 4, October 1996.

PATRICK, P. B., Sr. 1993. CASE integration using ACA services. Dig. Tech. J. 5, 2 (Spring),
84–99.

PURTILO, J. M. 1994. The Polylith software bus. ACM Trans. Program. Lang. Syst. 16, 1
(Jan.), 151–174.

PURTILO, J. AND HOFMEISTER, C. 1991. Dynamic reconfiguration of distributed systems. In
Proceedings of the International Conference on Distributed Computing Systems. IEEE Press,
New York, 560–571.

REISS, S. P. 1990. Connecting tools using message passing in the FIELD environment.
IEEE Softw. 7, 4 (July), 57–67.

REISS, S. P. 1996. The Field Programming Environment: A Friendly Integrated Environ-
ment for Learning and Development. Kluwer Academic, New York.

SCHANTZ, R. E., THOMAS, R. H., AND BONO, G. 1986. The architecture of the Cronus
distributed operating systems. In Proceedings of the 6th International Conference on
Distributed Computing Systems. IEEE, New York, 250–259.

SIEWIOREK, D. P. AND SWARZ, R. S. 1992. Reliable Computer Systems: Design and Evalua-
tion. 2nd ed. Digital Press, Bedford, Mass., 79–84, 201–219.

SPIVEY, J. M. 1989. The Z Notation: A Reference Manual. Prentice-Hall International, New
York.

STEINER, J. G., NEUMAN, B. C., AND SCHILLER, J. I. 1988. Kerberos: An authentication service
for open network systems. In Usenix Conference Proceedings. USENIX Assoc., Berkeley,
Calif., 191–202.

SULLIVAN, K. J. AND NOTKIN, D. 1992. Reconciling environment integration and component
independence. ACM Trans. Softw. Eng. Method. 1, 3 (July), 229–268.

SUNSOFT. 1992. ToolTalk 1.0.2 Programmer’s Guide. Sun Microsystems, Inc., Mountain
View, Calif.

SUNSOFT. 1993. The ToolTalk Service: An Inter-Operability Solution. Prentice-Hall, Engle-
wood Cliffs, N.J.

THOMAS, I. AND NEJMEH, B. A. 1992. Definitions of tool integration for environments. IEEE
Softw. 9, 2 (Mar.), 29–35.

WASSERMAN, A. I. 1990. Tool integration in software engineering environments. In Software
Engineering Environments, F. Long, Ed. Lecture Notes in Computer Science, vol. 467.
Springer-Verlag, New York, 137–149.

ZAMARA, C. AND SULLIVAN, N. 1991. Using ARexx on the Amiga. Abacus, Grand Rapids,
Mich.

Received May 1995; revised October 1995 and May 1996; accepted July 1996

Event-Based Software Integration • 421

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 4, October 1996.

