
Using an Imperative Language to Teach Applicative Methods

Daniel Barrett

Department of Computer Science

The Johns Hopkins University

Robert Strandh

Department of Computer Science

University of Bordeaux

November 17, 1994

Abstract

Many universities teach traditional, imperative languages in their introductory programming

courses, even though an applicative language may be preferable. In this paper, we present a

compromise and show how applicative programming methods may be illustrated e�ectively using

a subset of Pascal.

The approach focuses on order of evaluation, the if statement, functions, and recursion. We

discuss several program examples actually given in class, and interesting problems encountered

by students who had previous imperative programming experience. Although we are just begin-

ning to investigate the results of our approach, we believe that we have been able to cut the time

to explain Pascal syntax to a minimum, allowing more coverage of programming techniques.

1 Introduction

It can be argued that an applicative programming language o�ers the best introduction to program-

ming, given its simple syntax and few restrictions on combining expressions [1]. Unfortunately, some

universities require that a traditional imperative language be used in the introductory programming

courses. Such a university-wide decision may be in
uenced by:

� conservative faculty;

� students who prefer a language that is \actually used," as opposed to an academic \teaching"

language. This problem is very real in places that emphasize practical usefulness of the

computer science program.

The purpose of this paper is to show that applicative programming techniques can be used within

the framework of an imperative programming language (Pascal [3]).

This approach solves several problems inherent in introductory courses that must use imperative

languages. The instructor is no longer forced to spend a large amount of time discussing syntax;

instead, he/she can concentrate on programming techniques. More importantly, the students get a

more accurate view of computer science, rather than memorizing syntax and writing small, single-

purpose (\toy") programs.

In our method, we concentrate on the use of recursion together with the if statement. In

addition, the notion of order of evaluation is stressed, since it is important in both applicative and

imperative languages.

When using this approach, instructors may have di�culty inventing Pascal programming as-

signments that use this restricted syntax. Many introductory programming textbooks are of no

1

help; \interesting" programming problems generally do not arise until structured data types (ar-

rays, records, pointers) are discussed [2, 4, et. al.]. Therefore, an important problem is to �nd

interesting programming problems that require recursion but not structured data types.

We show two such examples that were given to chemistry and physics students. The �rst

program computes the resistance in a circuit, and the second translates a description of an organic

molecule into instructions for a hypothetical machine that can build the molecule. The problems

illustrate both fundamental and advanced concepts, such as recursive descent parsing techniques

and pre�x-to-post�x conversion. In addition, characters and integers are the only data types needed.

Both examples were well received by the students, especially since they were related to their �eld

of interest.

Our approach has been tested in the courses Introduction to Computer Programming (600.107)

at The Johns Hopkins University, and the introductory programming course for the second year

students at The University of Bordeaux.

2 Our Approach

Our method has several features. First, we teach only a subset of the keywords of the language.

Second, we de-emphasize iteration in favor of recursion. And third, we emphasize the notion of

a computation; that is, the order of evaluation of an expression, which may be more explicit in

an imperative language than in an applicative one. We recommend explaining the full evaluation

process, even if the language allows it to be hidden to some extent.

2.1 Expression Evaluation

As with any applicative approach, we discuss the notion of an expression. Because of the arbitrary

syntax of expressions in Pascal (or any other traditional language), we use a two-step method in

which we distinguish an expression in pre�x notation from a valid Pascal expression.

Thus, an expression is string of symbols that has a value. Expressions are evaluated to obtain

their value. An expression is always evaluated inside of an environment , as de�ned below.

There are three kinds of expressions:

� A constant is an expression. Its value is itself. Examples are 51 and 'R'.

� A variable is an expression. Its value is found by looking in the environment . An environment

is simply a table (possibly empty) of all known variables and their current values.

� A function application is an expression consisting of two parts:

{ The function name, which has an associated function rule;

{ An ordered list of expressions called arguments .

The value of a function is obtained by a two-step process.

1. Evaluate the arguments (recursively) to obtain the argument values.

2. Apply the function rule to the argument values.

This formalism translates to Pascal quite easily: constants are Pascal constants, variables are

Pascal variables of simple types, and function applications are the invocations of Pascal functions.

2

The function rule is the body of the Pascal function declaration, and arguments are Pascal param-

eters.

The concept of an environment also translates nicely. At any instant during the execution of a

Pascal program, there is an unambiguous set of variables whose scope includes the current block,

and their values are well-de�ned (though the variables might not be initialized). The environment

at that instant is a table containing those variables and their values.

2.2 Operators and Pre�x Form

We also consider the use of Pascal operators (arithmetic, boolean) to be function applications.

This introduces a small problem with applying this formalism to Pascal, because many operators

are in�x rather than pre�x. For consistency, students are taught how to write all Pascal expres-

sions in pre�x form. For example, the expression Cube(3 * number - 7) would be written as

Cube(-(*(3, number), 7)).

Students were cautioned that this syntax was not part of the Pascal language, but was purely

for consistency in our expression formalism.

2.3 A Teaching Tool: The Human Stack

To illustrate the process of expression evaluation, we use a method we call the human stack . In

this method, students stand in the front of the classroom and simulate the evaluation process itself.

To do this:

1. Write a simple Pascal program that contains expressions. It is best if the program contains

no conditional statements, so it has only one possible output. For example:

program ExpressionExample(output);

var

number : integer;

function Cube(x : real) : real;

begin

Cube := x * x * x

end;

begin

(* The environment contains only the variable "number". *)

number := 5;

writeln(Cube(3 * number - 7))

end.

2. Make a set of large, cardboard
ash-cards. These is exactly one
ash-card for each function

application (function call or arithmetic/boolean operation) that will occur in the execution

of the program. Side one of the card contains the name of the function, with the names and

current values of its operands (in the environment) beneath. Side two contains the value

computed by this function.

For example, given the card for \3 � number, with number = 5", side one lists the function

`�' with arguments 3 and number (value 5). Side two simply says 15.

3

3. Sort the cards into the order that the function applications occur during the program execu-

tion. You are now ready to begin.

4. In front of the class, on the blackboard, trace the program. As each expression is encountered,

write it in pre�x form, and say, \A new environment comes into existence!" At this cue, a

student walks to the front of the room, takes the next card from your set, stands next to

the \previous" student, and displays side one. Later, when the expression is fully evaluated

(perhaps creating other environments), the student
ips the card to reveal the value. That

student now returns to his/her seat.

As the functions invoke other functions, students will line up across the front of the room.

Their appearance and disappearance exactly mirror the actions occurring on the system stack

as functions are called (push) and return (pop). When the very last function exits, the stack

is empty, and the program is over. (The term \stack" does not need to be mentioned.)

This exercise helps to teach that every expression has a local environment, and that expression

evaluation in a correct program is unambiguous.

3 Example Homework Problems

An important goal of our approach is to give the students an idea of the problems facing a computer

scientist. The traditional approach to teaching programming can give the impression that computer

science is merely a collection of rules like you must not put a semicolon before an else, or that

programming is little more than summing the elements of an array of integers.

To achieve this goal, we use examples that require and illustrate recursive programming tech-

niques. This is relatively easy using an applicative language such as Scheme, but much harder in

Pascal. Examples beyond �bonacci and hanoi typically use complicated pointer structures which

are di�cult both to understand and to teach. In addition, we would like examples based on familiar

topics rather than straight computer science.

In this section, we describe two homework problems given to chemistry and physics students

at the University of Bordeaux. These programs use no complicated data structures: just a few

integers, reals and characters.

3.1 Resistor Networks

The �rst problem illustrates the evaluation of expressions in pre�x notation. To disguise the

computer science aspects of the example, we say that the expression represents a network of resistors

connected in series or parallel.

3.1.1 Problem Statement

Resistors networks arise naturally in electrical engineering applications. For our

purposes, a resistor network is either

� a single resistor,

� two resistor networks connected in parallel, or

� two resistor networks connected in series.

4

Many (though not all) real-life networks can be represented in this manner. Give an

example of one that cannot be represented this way!

The rules for computing the resistance of a network are the usual ones. If A, B, and

C are resistor networks, r is a resistor and R(A) is the resistance of A then

R(A) = R(r) if A is a single resistor, r.

R(A) = R(B) +R(C) if A is B and C connected in series.

R(A) = (R(B) �R(C))=(R(B) + R(C)) if A is B and C connected in parallel.

Why can we not use the formula: R(A) = 1=(1=R(B)+ 1=R(C)) for parallel-connected

networks?

Of course, �gures are the best way to represent resistor networks; but in order to

make it easier for a computer to manipulate them, we describe them as sequences of

characters. A resistor is represented by a single digit that indicates the resistance (in

Ohms) of the resistor. If B and C are two networks (of arbitrary size) connected in

series, we write SBC. If B and C are connected in parallel, we write PBC. For example,

the network:

8 7

5

9 5 2

4

4

1

3

9

Can be represented by

PS1P39SPP5S87P4S9S524

This becomes somewhat easier to read when parentheses are inserted:

(P(S1(P39))(S(P(P5(S87))(P4(S9(S52))))4))

A grammar for resistor networks

Write a formal grammar for the description (with or without parentheses) of a

resistor network. Suggested symbols:

Goal symbol: Network

Other non-terminals: Parallel, Serial, Resistor

Terminal symbols: P, S, 1-9

Write a program to compute the resistance of the network.

Suggested structure: Write a function for each non-terminal symbol. A function

computes the resistance of its corresponding entity, calling the other functions if neces-

sary.

Notice that, although all the resistors are integer valued, the �nal resistance is a real

number.

5

3.1.2 Proposed Solution

It is important to note that local variables are needed to hold temporary results. Without them,

the programwould be dependent on the order in which Pascal evaluates the arguments of a function

application.

program resistances(input,output);

var

c : char;

function resistance: real;

begin

resistance := ord(c) � ord('0');

end;

function network : real; forward;

function parallel: real;

var

r1, r2 : real;

begin

r1 := network;

r2 := network;

parallel := r1 � r2 = (r1 + r2);

end;

function serial: real;

var

r1, r2 : real;

begin

r1 := network;

r2 := network;

serial := r1 + r2;

end;

function network;

begin

read(c);

while (c = '(') or (c = ')') do read(c);

if c = 'P' then network := parallel

else if c = 'S' then network := serial

else network := resistance;

end;

begin

writeln(network);

end.

6

3.2 Organic Molecules

The second problem illustrates pre�x-to-post�x conversion and compilation techniques, disguised as

a problem in organic chemistry. The assignment is to translate the formula of an organic molecule

into a sequence of instructions for a hypothetical machine that builds the molecule.

3.2.1 Problem Statement

Organic molecules are naturally occurring recursive structures. We de�ne a radical

as a charged particle with a valence of -1; that is, it has one \free slot" available for

bonding to something else. A radical is made of carbon (C), oxygen (O) and/or hydrogen

(H) atoms. An organic molecule consists of two radicals bonded together. To simplify

the problem, radicals have only simple bonds and no circular structures.

A carbon atom has valence -4, oxygen -2, and hydrogen -1. Thus, a hydrogen atom

is a radical by itself, but the others are not. To turn an oxygen atom into a radical, a

second radical must be bonded to it. To turn a carbon atom into a radical, three other

radicals must be bonded to it, leaving one \free slot."

We represent our radicals as strings of the characters H, O, and C. In the case of

an O, there is another radical following the O, and in the case of a C, there are three

radicals following. Thus, the methyl radical is written CHHH, and the ethyl radical is

written CHHCHHH or CHCHHHH or CCHHHHH, depending on the order in which the carbon

atoms are listed. To make this more readable, one could insert parentheses as follows:

(CHH(CHHH)), (CH(CHHH)H) and (C(CHHH)HH).

A molecule is written simply as two consecutive radicals. For example, ethane

could be written in several ways, such as H(CHH(CHHH)) and (CHHH)(CHHH). A well

known molecule of great importance to Bordeaux (which one?) would be written

(CHHH)(CHH(OH)).

A grammar for organic molecules

Write a formal grammar for organic molecules. Suggested symbols are:

Goal symbol: Molecule

Other non-terminals: radical, C-radical O-radical H-radical

Terminal symbols: C, O, H.

Genetic engineering

We shall now imagine a machine that can produce molecules according to a speci�-

cation. The machine consists of four tubes and a work area. The tubes are the C-tube,

the O-tube, the H-tube and the radical-tube. The C-, O-, and H-tubes contain an in�nite

supply of carbon, oxygen and hydrogen atoms, respectively. The machine can be in-

structed to move an atom from either of these three tubes into the work area. For this

purpose, we use the GRAB instruction. The format is

GRAB <atom>

where <atom> is C, O, or H.

7

The work area contains an atom that is being worked on. If the atom in the work

area is a complete radical, it can be moved to the radical-tube with the SAVE instruction.

The format is simply:

SAVE

The radical-tube is an in�nitely long tube. This tube is so thin that only the last radical

saved can be accessed. Thus, radicals must be used in the reverse order that they were

saved.

To connect a radical to the atom in the work area, the machine has the instruction

CONNECT, which takes the radical last saved and connects it to the next free binding of

the atom in the work area. The format is simply:

CONNECT

Finally, there is an instruction to connect the two top radicals in the radical-tube to

each other, forming a molecule. The instruction is:

GLUE

In order to fabricate the ethanol molecule H(C(CH(OH)H)HH), the instruction sequence

would be as shown below. In order to make it easier to read, we show the contents of

the radical-tube and the work area as we go along. Also, to get the order right, we

always show the last connected radical immediately to the right of the atom.

instruction radical-tube work area

GRAB H : H

SAVE H : -

GRAB H H : H

SAVE H H : -

GRAB H H H : H

SAVE H H H : -

GRAB O H H H : O

CONNECT H H : OH

SAVE H H (OH) : -

GRAB H H H (OH) : H

SAVE H H (OH) H : -

GRAB C H H (OH) H : C

CONNECT H H (OH) : CH

CONNECT H H : C(OH)H

CONNECT H : CH(OH)H

SAVE H (CH(OH)H) : -

GRAB H H (CH(OH)H) : H

SAVE H (CH(OH)H) H : -

GRAB H H (CH(OH)H) H : H

SAVE H (CH(OH)H) H H : -

GRAB C H (CH(OH)H) H H : C

CONNECT H (CH(OH)H) H : CH

CONNECT H (CH(OH)H) : CHH

CONNECT H : C(CH(OH)H)HH

SAVE H (C(CH(OH)H)HH) : -

GLUE ****H(C(CH(OH)H)HH)****

8

As you can see, the sequence of instructions for the machine produced the desired

molecule. However, to produce the sequence of instructions, given the description of a

molecule, is time consuming. We would like a program that reads the description of a

molecule and produces the instructions for the machine.

3.2.2 Proposed Solution

The proposed solution is procedural rather than functional. Instead of values, the subprograms

produce side e�ects in the form of writeln statements.

program organic(input,output);

procedure radical; forward;

procedure Hradical;

begin

writeln('GRAB H');

writeln('SAVE');

end;

procedure Oradical;

begin

radical;

writeln('GRAB O');

writeln('CONNECT');

writeln('SAVE');

end;

procedure Cradical;

begin

radical;

radical;

radical;

writeln('GRAB C');

writeln('CONNECT');

writeln('CONNECT');

writeln('CONNECT');

writeln('SAVE');

end;

function readchar : char;

var

c : char;

begin

read(c);

while (c = '(') or (c = ')') do read(c);

readchar := c;

end;

9

procedure radical;

var c : char;

begin

c := readchar;

if c = 'H' then Hradical

else if c = 'O' then Oradical

else if c = 'C' then Cradical

end;

procedure molecule;

begin

radical;

radical;

writeln('GLUE');

end;

begin (� main �)

molecule;

end.

4 Problems With The Approach

Overall, the Johns Hopkins courses were overwhelmingly enjoyed by the students.

1

However, some

students had interesting problems understanding parts of the approach, and we describe them here.

Despite frequent reminders that Pascal uses in�x notation for arithmetic operators, some stu-

dents used pre�x form in their �rst programs. This error was quickly remedied; when the Pascal

compiler refused to accept a student's code, a Teaching Assistant pointed out the problem, and the

student did not make the same mistake again.

2

Another problem is that students could not see a reason for learning pre�x form in the �rst

place. Without knowledge of several languages, novice students found it di�cult to appreciate the

simplicity and generality of this expression model.

Students with previous experience in Pascal, BASIC, or FORTRAN were confused during the

�rst part of the course. Their idea of \programming" was very di�erent from the material being

presented. They felt frustrated because they wanted to use familiar loops and gotos instead of

recursion. However, this confusion lessened as the course progressed, and many of these students

became \converts" to the new methods.

Students complained that the lectures did not follow the book. As one student wrote, \I got

[functions and procedures] hopelessly messed up for two and a half weeks [because we] reversed the

order that the book covered them." Unfortunately, we have encountered no Pascal textbook that

emphasizes applicative programming (although one author is considering revising his textbook in

this manner[5]). To combat this problem, printed lecture notes were distributed every day in class.

Students complained that they did not learn all of the Pascal language in the course. We did

not cover enumerated ordinal types, sets, variant records, �le operations, and other Pascal-speci�c

topics. Our argument was that this was a course in learning how to program, as opposed to learning

1

Rated 4.7/5.0 or higher in the Johns Hopkins University Course Guide.

2

Perhaps this misunderstanding illustrates that the students found the pre�x form to be more consistent and

\natural" than Pascal's actual syntax; or perhaps they simply did not pay attention in class!

10

Pascal, and that the students were free to read about these topics in the textbook.

5 Conclusions

By concentrating on only a subset of Pascal's syntax, we have created a method for introducing

students not only to coding, but also to computer science. This is in direct contrast with meth-

ods that emphasize the syntactic details of an entire imperative language. We believe that our

method is advantageous for universities that teach an imperative language in the �rst undergrad-

uate programming course. It allows applicative techniques to be taught, and it illustrates that

simple computer programs can be used for solving realistic problems. As a result, we believe that

this approach gives students a good preparation for further computer science courses that do not

emphasize syntax, such as computation models and compiler theory.

References

[1] Harold Abelson and Gerald Sussman. Structure and Interpretation of Computer Programs. MIT

Press, New York, 1985.

[2] Doug Cooper and Michael Clancey. Oh! Pascal!, 2nd edition. W. W. Norton & Company, New

York, 1985.

[3] Kathleen Jensen and Niklaus Wirth. Pascal User Manual And Report, 3rd edition. Springer-

Verlag, New York, 1985.

[4] Elliot Ko�man. Pascal, 3rd edition. Addison-Wesley Publishing Company, Reading, Mas-

sachusetts, 1989.

[5] Elliot Ko�man, 1990. Personal communication.

11

